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Abstract: These last years, there is a growing interest for developing tools to the robust control of systems with
delays, among these tools there is the Smith predictor the structure of this controller was suggested for the
control of the industrial processes with delays, like: Steel factories, transmission lines... etc, but the idea can

be generalize for all the processes which have long delays among which: the hydraulic systems with free arias.
This study proposes to compare the contribution in the control robustness between the traditional Smith
predictor and a modified Smith predictor based in the use of the H8 norm. The satisfaction of the robust and
performances condition will be showed and the robustness margins will be compared through an application
of the two techmiques mn the control of a dam river system and also show what the modified Smith predictor can

bring in the pomt of view of stability and performances.
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INTRODUCTION

The water resources becomes mereasingly rare in the
world, this 1s for what it 1s extremely important to find
systemns m order to optimize their management, among the
techniques used for that, there are the dams upstream the
rivers in order to control the use of water, our contribution
consists to find a controller who maintain the downstream
flow near close to a set point value taking of account the
randomized consummation of water from the various users
(in particular farmers: indeed it is known that the irrigation
is the principal rivers water consumer ).

Description of the dam river system: For our study, we
will consider a simplified system represented in Fig. 1
with a dam upstream the river and a measuring station to
measure the water flow downstream and a pumping
station just upstream, the consumers (farmers) pumping
stations are distributed along the river!,

To simplify, it is supposed that the pumping stations
can be gathered in only one station at the end of the right
part of the river, the rate of flow (Qout) represents the
request of the farmers, it is not measurable (the farmers
can pump the quantity of water wiuch they want as they
want: on-demand system of management) and thus
considered as a disturbance which must be reject.

The controlled vanable 1s the rate of flow downstream
at the end of the river (Qend), this rate must be kept in an
interval defined for ecological and hygienic reasons
instead of farmers consummation:

0.5m3/s<Qend<5 m3/3 (1)

Thus our objective is to synthesize a controller to
keep the flow downstream close to a set poumt flow
instead of the not measured water consummation of the
users, 1n other words the role of the controller 1s to act on
the flow upstream “Qup” with an aim of maintaining the
flow downstream “Qend” as constant as possible in the
considered interval, which means that the controller must
reject or attenuate the immeasurable disturbances “Qout”.

The system is modelled by a transfer function of
second order plus a delay:!"

Gols) = _ exp(-st) )
(1+sKn(1+sKz)

With: K, =9995.1+3310.5); K,=9995.1-3310.5;;, © =
24463 sec.
After the numerical application we obtain:

exp(—24463s) 3)

Gols) =
® {1+1.999.10%s +1.109.10°s%)
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Fig. 1: the sumplified “dam river” system

R—_; E K(s) lbl Gy(5) |-P LA, (s} 3
Fig. 2: The perturbed closed loop system
10" 1
10° 4 Stability specification
1074 /
107
® 16~ uncertainties
1074
107
1074
0 0 107 10° 10
Frequency rad/sec

Fig. 3: Frequency domain representation of the norms of
the stability
multiplicative uncertainties

specification and the output

Description of the uncertainties acting on the system:
The system to control i1s defined by a nominal model and
a field of uncertain model, in our system uncertainties are
due to the various rates of flow (Qout) which represent
the request of the farmers: Indeed they can pump water
when they want with the quantity that they want. To
represent these uncertainties we use the output
multiplicative form: Fig. 2.

With: R: set point, E : error; K (S): controller; A _(s):
output multiplicative uncertainty, Y: it correspond to the
rate of the downstream flow Qend; U: control variable: it
correspond to the rate of the upstream flow Qup.

The considered uncertainty mclude also the delay
variations and the dynamic vanations, which are due to

the system nonlinearities.
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For areference flow: Que[Q min, Q max] with: Q min
=05m%s and Q max=5m’s5s, the transfer function of
the real system G(s) is then:

Gs) =[1+ 7m(s)] G, (s) )
Thus:
‘ Am(s)‘ _|G)Gos) 6]
Go(s)

With: GO (8): transfer function of the nominal system;
3 (8): transfer function of the real system.

Quantification of the uncertainties: Uncertainties acting
on the system must be raised or limited by the stability
specification (W1 (S)) according to the following
sformula'®:

Am(s)| € W1(jw), ¥w GY

With: W1 (5) (also called the stability specification):
is the weighting filter, it defines the upper limit of the
uncertainties acting in the system.

It means that the norm of W1 (S) must be higher than
the norm of Am (S), this enables us to guarantee the
stability of all uncertain systems who’s those uncertainty
norm is lower than the stability specification norm.

Determination of the stability specification: We can
approximate the maximum of the uncertainties acting on
the system by a weighting filter (stability specification)
W1 (8) given by the following function'™:

2s

= @
(1000s +1)

Wl(s) =

Figure 3 represents the norm of the stability
specification with the norms of various uncertamties (this
one can result in nomimal system parameters variations),
it is noted that the norm of the stability specification W1
(S) is greater than the norms of all the uncertainties
caused by the other disturbed modes.

Classical smith predictor controller: The idea of the
Smith Predictor 1s to synthesize a controller for the
process without the pure delay and in the second time, to
calculate a corrector adapted to the process with delay,
starting from the controller calculated before.

Thus, calculations are much simpler because the pure
delay can introduce a significant number of poles m the
origin and thus raise the order of the nominal transfer
function™.
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Fig. 4b: System 1n the “IMC” form

The main advantage of the Smith predictor controller
1s that the mtrinsic delay (that we cannot compensate)
occurs out of the loop Fig. 4a, m other hand the Smith
predictor method is an easy way to synthesize a
correctors for the systems with high pure delays (frequent
case in industry), it is applied to the systems put in the
IMC (internal model control) form Fig. 4b.

With: H, (S): the Smith predictor controller, G, (3):
nominal system transfer function, G, (S): nominal system
without delay transfer function, He (3): closed loop
controller, G(S): real system transfer function.

To design the Smith Predictor Controller for a system
with delay, we splits the transfer function of the nominal
system G, (S) in two terms:

G, (8) =Gy (8) G (S) ®

With: G,, (S): pure delay, G, (3): nominal transfer
function without delay.

We can deduce analytically the controller He (S)
(Fig. 4b) by minimizing the H2 norm of the error E for all
the disturbances W, 1t 1s given by the following
formula:; %,

He(s) = 711 ©
(1+28)" Guol(s)

With: n is an integer selected in order to make He (3)
proper and Ais the design parameter, it is selected in such
way that the robustness stability condition is satisfied
(we will further show how to calculate it).
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Modified smith predictor controller: This method is
based on the optimal control theory: it consists in
desigming a PID controller by mimmizing the H8 norm of
the error for a system presented n the “IMC™ form, the
interesting characteristic of tlus method 15 that the
controller 18 calculated analytically mn addition to the
popularity of the PID controller who can be allotted
particularly to his performances and his simplicity!”.
According to Fig. 4b, we can write:

Hc0(s)

- = (10)
1+ HcO(s).Gmuo(s)

He(s)

H,(s)

s (11)
1-G,, (s).H.(s)

H,,(s)=

The man objective of the automatic control 1s to let
the output of the system follow the reference (1e.: to
minimize the error E), let see the Fig. 5:

With: D disturbance, yr: Reference, y. Output,
according to this figure we can write the following
relations:

y=GK(1+GK) 'y, +(1+GK) 'd (12)
e=y, ~y=(1+GK) '(d—y,) (13)
dL:(HGK)‘1 -8 (14)

r

S is called the sensitivity, therefore: minimizing the
error tends to minimize the sensitivity S and that will give
place to an optimal control problem, suppose that the
optimal performances are ensured by the minimization of
the H8 norm of the sensitivity, 1e.; minfW3 (5).3 (8) |,

where W3 (S) is the performances specification'™.

Application in the dam river system: The synthesis of an
optimal H8 PID controller for the “dam river” system will
be made on a more adapted model, 1.e: we will approximate
the delay of our model by a simple 1st order rational

several methods of delays

(s

function, there exists
approximation among which: Pade approximation

The Pade method consists of approximate the delays
by rational fractions whose development in Taylor series
in the vicinity of the origin coincides with that of a given
function.

Tn our study the delay will be approximated according
to the first order Pade formula like following:
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Then the approximated model becomes:
T
(1-s)
G(s) = 2 (16)

(1+gs)(l+sK1)(1+us)

It 18 what we will consider as the nominal system and
1t will be used to synthesize the PID Hee controller. The
error introcduced by the Pade approximation is included in
the output multiplicative uncertainty. An analytical
procedure of design is developed for the given system,
indeed according to the maximum modulus theorem, there
is a fundamental result concerning the complex functions:
|W3(s).S(s)| does not reach its maximum values at an

interior point of the open right half plane!.

In addition, G (S) has one zero (g :2) in the open
T

right half plane, therefore, He(S) must be selected in such
way that the following inequality relation holds:

| W3(s).01 - G(s). He(s)] oo = W3(2}‘ (17)
T

Consequently we have:

min [ W3(s).8(s)|= = min [W3(5).(1- G(s).Hes))| (1¥)
Let: W3(S):l for a unit step entry yr, thus to
8

compensate for the pole m the origm introduces by W3
(S), a constraint will be imposed in the procedure of
design:

Lim(1—-G(s).He(s))=0
—> o0

(19)
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With this constraint, the optimal controller Heopt(iS)
is obtained as follows:

Heopt(S)=(1+ %S)(l DS (20)

Finally, in order to make Heopt proper, we will use the
following low-pass filter:

YO p— 1)
1+ sy
Thus:
A+RDATKDA 1) ()

He{s)=H,,,(5)f(s)= (1+2s)

The Optunal H8 PID controller 1s given analytically by
deducing from the Eq. @ the controller HeO (S) and
by comparing it with a conventional PID controller given

by:

1 (23)

. 1
Hpid{s)=K {1+ —+Tds
pid(s)=K.( Tis )Tls+1

Then we find the new HE8 PID controller parameters
like following:

XZ
20+

Ti:K1+K2,Td:K1_l;I_<2
1

i
Ke= !

Tf= =
22+ T

>

T’

Evaluation of the system robustness

Robust stability and performances conditions: Using the
“IMC” representation, the robust stability condition will
be: “The system represented by Fig. 4b is stable instead
of all the output multiplicative uncertainties described in
the Eq. 157 if: 1

+ nominal system is stable.

‘Ty(jw)| <‘W]Qw)"‘ T, (24)

With: Ty is the transfer from the reference R to the
output Y.
And the robust performances condition 1s:

L L — (23)

W3Gw)|
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Fig. 6a: Stability and performances robustness condition
(Smith predictor)
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Fig. 6b: Stability and performances robustness condition
(Modified Smith predictor)

In let us combine the Eq. 24 and 25, we find the
robust stability and performances condition:

Ty, Gw)| WIGw)+[[1- Ty, (Gw)]W3(jwi[<1  (26)

Ty, (jw)

: < WI(w) ! 27
1-[[1- Ty, Gw)IW3(jw)|

Robustness margin: Another way to evaluate the system
robustness instead of the uncertainties: is to determine
the gamn and phase margins (traditional robustness
evaluation)™, these measurements are not well adapted to
the robustness evaluation in the case of the delay
variations, the delay and modulus margins are more
useful, these margins offer a simple method to evaluate

the controlled systems robustness within an acceptable
variations in the gain, phase and delay™.

Modulus margin: Let the transfer function of the open
loop system oh the Fig. 5:

L(3)=K(3).G(S) (28)
The modulus margin (Mm): is the minimal distance

between the function T, and the point (- 1,0) in the Nyquist
plan®™

M,, =inf{l+ L{jw)| we R} (29)
M, =Lt LGwl, =5, Gw) —‘Sﬁ} (30)

Delay margin: The delay margin is the maximum of time
delay T which allows the closed loop of all the disturbed

processes to remain stable™.

Md= (31)
W

=4

Where: Q is the phase margin (rad) and Wet 1s the
frequency of the intersection of L. with the unit circle in
the Nyquist plan (rad/sec).

How to calculate A parameter: The following algoerithm
allows us to find the optimal A parameter™™:

»  Tocheck the Eq. 27 for a given Avalue
+ If the Eq. 27 was not satisfied, decrease A.
s Repeat 1 and 2 until: the Eq. 27 is satisfied.

If no value of Aleads to the satisfaction of the Eq. 27,
the robust performances condition must be lowered.

Application: The dam river system is of 20Km length, the
farmer’s water consumption 1s supposed between 0.5 and
5 m’/sec. If we selected the performances specification

W3 such as: wiajw)= 1 | with MP = 3, ie: the
MP

maximum of the sensitivity modulus |S| remains lower
than 3 for all the disturbed models.
The initial value of A is given by

, W
_ MP+13 (32)
Xy l[ MP_J 1] -
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Fig. 7a: Nominal system step response (Smith predictor)
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Fig. 7b: Nominal system step response (Modified Smith
predictor)

With: W' 1s the frequency for which W3 (jW" =1

The obtained optimal value of Ais: A
18577sec = 0.594,, it’s the value for which the robust
stability and performances condition is satisfied.

RESULTS

Frequency and time responses: The time and frequency
responses of the dam river system controlled by both the
traditional and modified Smith predictor are illustrated by
Fig. 6( a,b), 7 (a,b). They show the satisfaction of the
robust stability and performances condition for the two
systems. The step responses of the nominal system
(with delay) show no overshoot and a fast time response
for the two systems (faster for system controlled by the
modified Smith predictor).

Robustness margins: The followmng comparative table
shows the various robustness margins for the system
controlled by both the traditional and modified Smith
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predictor. The robustness margins are overall better for
the system controlled by the modified Smith predictor.

CONCLUSION

The Smith Predictor is a powerful tool to control
systems with delay. Tn the stage of the adjustment of the
Controller, the delay 1s not taken into account but at the
implementation, the delay effect 15 eliminated by using the
retroaction effect (feedback) of the prediction from the
variable to be regulated, this prediction requires a good
model of the system to be regulated, the error mimmization
leads to obtain good performances and stability margins,
indeed: the feedback of the error prediction leads to take
account of the modelling errors and noises which act on
the system.

Another method also based on the same structure of
the Smith Predictor uses a model of the system whose
delays is approximated by the Pade method, allows
improved stability and performances margins.
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