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Meso-Mechanical Analysis of 3D Braided Composites Based on a Finite Element Model
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Abstract: As for 3D 4-directional rectangular braided composites, a 3-Dimensional (3D) Fimite Element Model
(FEM) based on a Representative Volume Element (RVE) 1s established under the periodical displacement
boundary conditions, which truly simulates the spatial configuration of the braiding yarns. The FE software
ABAQUS 1s adopted to study the mechanical properties of the composites, mcluding the effective elastic
properties and the meso-scale mechanical behaviors. The effects of the braiding angle and the fiber-volume
fraction on the engineering elastic constants have been investigated in detail. The predicted effective elastic
properties are in good agreement with the available experimental data, demonstrating the applicability of the
FEM. By analyzing the stress distribution and deformation of the model, it is proved that the RVE-based FEM
can obtain reasonable stress field and successfully represent the meso-scale mechanical behaviors of 3D
braided composites contamning periodical structures.
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INTRODUCTION

Three-Dimensional (3D) braided composites have
been attractive for industrial applications because of their
excellent mechanical performances, such as better out-of
plane stiffness, strength and lugh impact resistance, etc,
compared with the fiber-reinforced laminated composites.
However, due to their complicated architectures and
anisotropic nature, it 1s difficult to predict the mechanical
properties of 3D braided composites.

To make full use of 3D braided composites, many
models have been developed to analyze the
microstructure (L1 ef al., 1990, Du and Ko, 1993, Wang
and Wang, 1994; Pandey and Hahn, 1996, Chen et al,
1999) and the mechanical properties (Ma et al., 1984,
1986; Sun and Sun, 2004; Sun and Qiao, 1997; Gu, 2004,
Lei et al, 1992; Sun et al, 2003; Zeng et al., 2004;
Tang and Postle, 2002; Chen et al., 1999; Yu and Cu,
2007). Ma et al. (1984, 1986) studied the effective elastic
properties of 3D braided composites by using the ‘Fiber
mterlock model” based on the maximum strain energy
principle and the “Fiber inclination model” based on the
modified laminate theory. Wang and Wang adopted a
mixed volume averaging technique
mechanical properties of 3D braided composites. Sun
and Sun (2004) reported a volume-average-compliance
method to calculate the elastic constants. Sun and Qiao
(1997) studied the tensile strength based on the modified

to predict the

classical laminate theory. Gu (2004) presented an
analytical model to predict the umaxial tensile strength
based on the strain energy conservation law. Lei et al.
(1992) adopted a 3D truss finite element technique to
analyze the mechamcal properties of 3D braided
composites. Recently, two new prediction models based
on finite element procedures (Sun e al, 2003; Zeng et al.,
2001 ) were developed to evaluate the elastic performance
of 3D braided composites. Tang and Postle (2002)
analyzed the nonlinear deformation of 3D braided
composites by the finite element method. Chen ef al.
(1999) proposed a fimite multiphase element method to
predict the effective elastic properties. Yu and Cui (2007)
developed a two-scale method to predict the mechanics
parameters of 3D braided composites.

Although these analytical and computational models
have contributed to an enhanced understanding of the
mechanical properties of 3D braided composites, the
models have their own limitations. For example, simple
architectures considered in the analytical models
(Ma et al., 1984, 1986; Sun and Sun, 2004; Sun and Qiao,
1997) have great difference with the truly geometrical
microstructure  of 3D braided composites. As the
analytical models based on the laminate theory have
inherent limitations mn geometrical modeling, they are
mamly devoted to predicing the global stiffness
properties of 3D braided composites. Further, the
computational models based on finite element methods
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(Leiet al., 1992; Sun et al, 2003, Zeng et al, 2004;
Tang and Postle, 2002) also considered the architectures
of the composites to be too simplified and the umform
strain boundary conditions were applied in the periodical
unit cell model {(Chen et al., 1999), which made it difficult
to obtain an accurate local stress distribution of 3D
braided composites.

In order to predict the mechanical properties of 3D
braided composites, it is necessary to establish a model
for obtaining the accurate stress distribution of 3D
braided composites. However, there are few literatures on
predicting the local stress distribution and deformation of
3D braided composites, which is important to accurately
predict their mechanical properties. Compared with the
analytical models based on the laminate theory, 3D meso-
mechanical fimte element methods can contribute to truly
model the microstructure of 3D braided composites. The
main objective of the present work is to develop a new 3D
fimite element model for obtamning the stress distribution
and effective elastic properties of 3D braided composites.
The model has taken into account the periodical structure
of the composites and the interaction between the
braiding yarns. The periodical displacement boundary
conditions have been applied in the model. In order to
fully exploit the potential of 3D braided composites, the
effect of the braiding angle and the fiber-volume fraction
on the mechanical properties 1s analyzed in detail. The
predicted effective elastic properties are in good
agreement with the available experimental data,
demonstrating the applicability of the meso-mechanical
FEM. By analyzing the stress distributon and
deformation of the model, some conclusions are drawn
herein.

MICROSTRUCTURE ANALYSIS AND
UNIT CELL MODEL

Although a few representative unit cell geometrical
models (L1 et al., 1990; Du and Ko, 1993; Wang and Way,
1994; Pandey and Hahn, 1996; Chen ef al, 1999) have
been proposed to describe the microstructure of 3D
braided composites, some assumptions of these models
are apparently unreasonable or too sumple. It makes some
vital architecture features of the yam configuration
inconsistent with the true microstructure of 3D braided
composites. For example, 3D braided composites are
composed of the complex fiber-bundle geometry and the
matrix pockets. In order to consider the mutual squeeze of
the yarns, the cross-section shape of the yarn has usually
been supposed to be elliptical. The assumption makes
the configuration of the yarns apparently different with
the experimental phenomena observed experimentally

(Chen et al, 1999) which showed that the yarns
contacted with each other by sharing a plane due to their
mutual squeeze. This important microstructure feature
should not be neglected in the geometrical modeling,
which greatly influences the stress distribution of 3D
braided composites.

In order to perform the analysis of mechanical
performances of 3D braided composites successfully, it
is important to establish a reasonable microstructure
geometrical model which can describe the spatial
configuration of the yams effectively. According to the
movement of the yarn carriers on the braiding machine
bed and experimental observation (Chen et al., 1999) the
microstructure of 3D 4-directional braided composites
produced by the four-step 1x1 braiding procedure has
been investigated in detail.

To ensure consistent and uniform fabric structure,
suppose the braiding procedure keep relatively steady,
at last n a specified length of braiding. According to
the movements of carriers, 3D 4-directional braided
composites can be regarded to be made of an infinite of
two kinds of repeated sub-cells, A and B. Figure 1
schematically shows the distribution of sub-cell A and
sub-cell B in the cross-section of rectangular specimen.
As shown in Fig. 1, sub-cell A and sub-cell B are
constructed, respectively, based on two braiding yams in
the cross directions. The difference between sub-cell A
and sub-cell B is the spatial directions of the braiding
yarns. It is noteworthy that sub-cell A and sub-cell B
marked with the dash lines distribute alternately every half
of a pitch length h in the braiding direction of the z axis, as
shown in Fig. 2.

Due to the complicated microstructure of 3D braided
materials, it makes unfeasible to undertake a full
micromechamcal simulation aiming at a whole structure.
Instead, Representative Volume Element (RVE)-based
approach can be used to analyze the mechanical
properties i the macro-meso scales. Considering the
periodical feature of sub-cell distribution, a umnit cell
that is the smallest periodical RVE is selected as shown in
Fig. 1. According to the unit cell partition scheme, all the
umit cells are oriented in the same reference frame as the
specimer, which 1s quite favorable for the analysis of the
mechanical properties. Figure 2 shows the topological
relation of the main yarns in a parallelepiped unit cell. v is
the angle between the central axis of the braiding yarn and
the z-axis. The relationship between the angle v and the
surface braiding angle ¢, is defined as

tan}':-\/itano: (1)
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Fig 2: Topological relation of the main yarns in the vt

The solidunit cell model of 3D 4-directional braided
composites is shown in Fig 3. A1l the yarns used in the
braided petforms ate assmwned to have the same
cotstituent material size and flexibility, Cons dering the
mutua squeezing of the yarns, the oross-section shape of
the Wwaiding warn perpendicular to the central arisis
assned to he octagonal and the octagon cortans an
inseribed ellipse with maor and minor radii & and b,
regpectively, which is shownin Fig 4.

The width and the piteh length of the wrdt cell are,
regpectively

Wo=W =dfib (4

arud

L (3)
tar ¥

'y
{J’ L
L]
i v [ F
I n L
] 1
n 1
] [
¢ ] v 4
L
0
h ]
1 [}
1 ]
! ] o

L
]

Fig 4 Crosssection shape of varn

Zoecor ditngtothe tangent relationship of the ellipticd-
cylinders of the traiding varns, the relationstip between
the maj ot atd mince radii of the inscribed ellipze, a andh,

rat be ohtained;
a=fThcosy 4

The lengths of L, andL, inFig 4, are gven by
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&g the idealired braided composites considered

herein are assumed to be made of the repeated unit cells,

the fiber wolume fraction of 3D braided composites can be
determined by the following express on
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V== (7

Where, V, 1s the volume of all the yarns in the unit cell, V,
15 the volume of the whole umt cell and ¢ 1s the fiber
volume fraction of the yarn.

The 3D solid unit cell can be established by using the
CAD/CAM software CATIA P3 V5R14.

FINITE ELEMENT MODEL

The RVE-based meso-mechamical FEM mainly
consists of three parts: The periodical boundary
conditions and finite element meshing, the constitutive
relations of components and the definition of the effective
elastic properties. The details of the finite element model
are presented 1n the subsections.

Periodical displacement boundary conditions and finite
element meshing: Since the analysis 1s based on the RVE,
the periodical boundary conditions should be applied in
the model in order to obtain a reasonable stress
distribution. Two continuities must be satisfied at the
boundary surfaces of the neighboring cubic RVEs. The
first 1s that the displacements must be continuous, and
the second is that the traction distribution at the opposite
parallel boundaries of the RVE must be uniform.
Therefore, the unified periodical displacement boundary
conditions suitable for the RVE proposed by Xia et al.
(2003) were employed in the model. These general
formulas of the boundary conditions are given as follows:

u, = g,ka +u (8)

u’ = €, x4 (9
wo=e,xl +u (10)

w - =, (k- x[ )= g Ax] (11)

InEHq. 8, & _ 1s the global average stramn tensor of the
pericdical structure, P, is the periodic part of the
displacement components on the boundary surfaces and
it is generally unknown. For a cubic RVE as shown in
Fig. 4, the displacements on a pair of opposite boundary
surfaces (with their normals along the X, axis) are
expressed as in Eq. 9 and 10, in which the index “j+”
means along the positive X, direction and “j-” means
along the negative X, direction. The difference between
Eq. 9and 1015 givenin Eq. 11. Since A, are constants for

each pair of the parallel boundary surfaces, with specified
g, the right side of Eq. 11 become constants.

It can be seen that Eq. 11 does not contain the
periodic part of the displacement. It becomes easier to
apply the nodal displacement constraint equations in the
finite element procedure, instead of giving Eq. 8 directly
as the boundary conditions. In order to apply the
constramnt Eq. 11 in the FEM, the same meshing at each
two paired boundary surfaces of the RVE should be
produced.

Due to the complexity of the microstructure the 3D
solid tetrahedron elements were applied to mesh the
whole model, as shown in Fig. 5. The model is composed
of the straight yarns in various directions and the matrix
pocket from Fig. 5. It 1s assumed that the perfect bonding
exists between the yams and the resin matrix pocket.
Uniform meshes had been made to satisfy the continuities
of stress and displacement on the interfaces of the
constitutive materials, including the interfaces of the
yarns in different directions and the interfaces between
the yarns and the resin matrix pocket.

Constitutive relations of components: As shown m Fig. 5,
two “types” of materials are contained m the model. They
are the yarns and the resin matrix pocket, respectively.
The yarns can generally be regarded as the unidirectional
fiber-reinforced composites m the material coordmnates
systems. The principal direction 1 of the matenal
coordinates systems for a yarn is defined to be paralleled
with the fiber direction. The yarns and the resin matrix
pocket are assumed to be transversely isotropic and
1sotropic, respectively. Both of them are believed to be
linearly elastic in the model. The engineering elastic
constants of the yam can be calculated by the famous
micromechanics formulae proposed by Chamis (1989):

El = (pEfl + (17 (p)Ema
E

E,=F,=— ™
L e -E, /By
G
G, =Gy = n )
FT 1= Je1-G, /Gy, 12)
G
G23

17\/6(1*(}“1/(}&3)’
Vi =V =@ vy H A=)y,
E,
2G

Vo3 =
23

Where, @ is the fiber volume fraction of the yarn, By,
15 the Young’s elastic modulus of the fiber in principle
axis I, B, 18 the Young’s elastic modulus of the fiber in
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Fig. 5:Finite elem ent mesh of the model

principle axis 2, G, isthe longitodina shear modolus of
the fiher, G, 15 the transverse shear modulus of the fiber,
¥y 18 the primary Poisson’s raio of the fiber, E_ V _ and
GG, = EJ2(1 + w0 represent the YVoung's elastic
modilus, Poisson’s ratio and sheat moodudus of the mateix,
respectively.

Effective elastic properties: To obtain the effective
elagtic properties of 3D 4 directional traided composites,
a hom ogerdzation approach is employed in this study by
considering the heterogeneous composites in the micro-
scale to be a homogeneous material in the macro-scale.
Given the periodic cubic BRVE, the global strain doba
stregs relation can be witten as

5 =83, (13)

Where, 3, isthe effective compliatie matriv. Ssapninga
set of the global strain, = and applying the periodic
boundary conditions in the form of Eg 11 in the FERL
atalysis, we can obtain a wnigue stress distribastion of the
EVE. Then the gobal stress, T, corresponding to this set
of global straing canbe chtained by

— 1
g, =—|& dv (14
1 'l;liri "

In the 3D case applying this set of & (six
componetits), six equations thus can be obtained For a
general case where there is no orthotropic axis of
gymitietry of the moaterial the application of four lineardy
independent sets of the global strains T will have
aufficient equati ons to determine 21 independert moaterial
cotstatts of the compliance matrix 3, (Zia ef al., 2003).

&z the effective compliance matriy 3, is one of the
inherent properties for 3D traded materials with the
decided microstructure and component materials, the

(b} Resin matix pocke t

Tabk 1:Loadiyg case s of periodical displac ermert bonmdary o orditions

k E T = Ve . Vo
1 0.01 ] a I ] I
2 ] 0.01 a I ] I
3 ] ] nnl1 I ] I
4 ] ] a ooz ] I
5 ] ] a I 0.0z I
[ i i a i] i on3

calel ation of itz walue has on relation with the boundary
coticitions applied on the RVE. To awoid the troukle of
solwing the equations, s sets of global strains were
appliedinthe FE analvsis of BWE. Bix sets of loading caze
of periodical displacement boundary conditions are
shownin Table 1.

By prescribing the sir sets of the global straing ;.
(k= 1,2.6), the corresponding Sobal stress E: cat be
cal culated by Eg. 14, Then the following equations can be
ohtaitie d

EICE A B A (15)

It iz easy to obtain the effective compliance mateix 3
thr ough
(16)

- =2 = )= — —5 —a]”!
S“ = Eu,Eu,...,Eu, o Uu,'ju,...,ﬁu, (a7

RESULTS AND DISCU SSION

Comparison of effective elastic properties with
experimental results: In order to verifyy the applicabilitsy
of the FEM based on the software ABAQT, three
examples with typical rading angles are selected from
the available experimerts studied by Chen ef . (1999
A1 the analyses reported heredn were done for the 30 4
directional braided composites by the d-step 1=l
tectanmd ar brai ding procedhres. The elastic properties of
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Table 2: Mechanical properties of component materials

Materials Ey (GPa) Ep (GPa) Gyy» (GPa) Gp: (GPa) Viyz Vo
Carbon fiber T300 230 40 24 14.3 0.25
Epoxy resin 3.5 0.35

Table 3: Braiding parameters of specimens and structural parameters of unit cell model

Braiding parameters of specimens

Structural parameters of unit cell model

No. Dimensions (mim) a(®) V%) ¥(*) a(mim) b(mm) (%) W, =W, (mm) h (mim)

1 20x6x250 19.0 46.6 26.0 0.599 0.385 57.8 2.175 6.317

2 20%6%250 300 47.2 392 0.542 0.404 60.7 2.286 3.960

3 20x6x250 37.0 47.1 46.8 0.503 0.425 62.3 2.402 3.188

the component materials, mcluding 12K T300 carbon fiber  and

and TDE-85 epoxy resin, are listed in Table 2. According

to the braiding process parameters of three specimens [ 01110 -00340 -0(B8 0 0 0o

from Chen et al. (1999) the main microstructure 00 01110 -0BKR 0 0 0

parameters of unit cell models used mn the calculation 1s 008 08 0064 0 0 0

shown in Table 3. 8= 0 0 0 06k 0 0 x107 1/MPa
According to the meshing scheme of the FEM, )

adaptive finite element meshes were used to keep element 0 0 0 0 00642 0

size small in the edges of the matrix pocket. In the study, 0 0 0 0 0 03

the FEM for specimen No.1 consists of 9854 nodes and
49030 tetrahedron elements. The FEM for specimen No.2
consists of 17462 nodes and 88700 tetrahedron elements,
the FEM for specimen No.3 consists of 15298 nodes and
78518 tetrahedron elements. Tt is noted that relatively fine
meshing size is required in order to obtain more accurate
stress distribution, especially near the boundaries of the
RVE. However, if only the global stiffness 1s concerned,
relative coarse meshing size can still provide satisfactory
results (Xia et al., 2006). The meshing size of the models
n this study 1s sufficient to guarantee the convergence of
the solutions.

The effective elastic properties of 3D braided
composites are first calculated by the FEM and the
calculated stiffness properties are compared with
Chen et al. (1999). The effective compliance matrix S; for
specimen No.1, 2 and 3 are given, respectively, as follows:

[ 01208 -0M25 -00126 0 0 0
-00425 01208 -00126 0 0 0
. -00126 -00126 0012 0 0 0 1% VP
! 0 0 0 0065 0 0
0 0 0 0 00965 0
|0 0 0 0 0 0253
[ 01173 -00352 -0028%4 O O O ]
-0(352 01173 -002% 0 0 0
. -00281 -0 0M15 0 0 0 1G° N
0 0 0 00676 0 0
0 0 0 0 0067 0
| 0 0 0 0 0 0412

It 18 found that 3D 4-directional braided composites
can be considered to be transversely isotropic materials
in the macro-scale under small deformation assumption.
According to the relationship between the engineering
elastic constants and the compliance matrix S, the
engineering elastic constants of 3D 4-directional braided
compaosites, including nine independent elastic constants,
can be calculated by

1 1 1
E.= —, Ey = —, E,= —
5, Sy Si
3, S S a7
B e
M 5y Si g S
1 1 1
G,=— Go= —, G = —
S44 S55 Sﬁﬁ

Table 4 gives the predicted and measured elastic
constants of 3D braided composite. There is a good
agreement between the measured and predicted axial
tensile modulus for all the three samples studied. The
predicted Poisson’ ratios are basically agreed with the
measured values. The results indicate that the proposed
FEM can be used to calculate the global elastic properties,
demonstrating the applicability of the meso-mechanical
FEM.

Deformation of unit cell and distribution of stress: For
3D 4-directional braided composites with periodical
structures, RVE-based finite element model can also be
used to calculate the mechanical properties in the meso-
scale, such as the deformation of the model, distribution
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Tabk 4: Comparisor, of the effe ciive elastic covetante predicted by the mode ] and experitertal data

Hao.l Ho2 Moz

Elactic constavite Eope rivve it Predicted Experiimert Predicte d Eope rivnetit Predicted
E/GFa gaa 8.52 a0l
ES 5P 28 8.52 901
ELFa 58.74 54585 AT A0 2412 1805 16.0%
[ENE 1036 14.20 15.57
LY 1036 14.80 15.57
[ES LY 305 708 10.27
Wiz n.rd gl nra 068 oan 062
Y 049 a9 100 0.6% 07 042
Ve 0335 0.30 0.31

(a) Deformation of positive
swface vertical to 2 axds

Fig 6 3wface deformati on of the model under loading casze 3

of stress and stress concentration, etc. To demotistrate
the application, the FEL of specimen Mol subjected to
typical loading cases is chosen to show the moeso-
mechanical behavior of 3D 4-directional bhraided
Ot {0 site s,

Figure & shows the deformation of two parallel
boundary sutfaces wertical to the z axis of the model
subjected to loading case 3, k = 3. Under such loading
case, ©, equals to 001 and all the other 5 effective
average straing ecual to zero. From Fig 6, the two
opposite boundary srfaces do not remiain plane ary m ore
atud are warped after the deformation (the magnified factor
of the defoemationis 100 tim ed) . The warped deformati on
ocow s simadtaneonsly at the other two sets of opposite
boundary sufaces of urdt cell, bt the warped extent is
relatively weal The teason resulted in the phetiomena is
that the unit cell model of 3D 4 directional hraided
composites does not have the symimetries of geom etrica
structare and phyysical properties.

Figure 7 shows the deformation of the model
subjected to loading case 6, k = 6. Under such loading
case, ¥, equals to .02 and all the other five effective
average straine equal to zero. From Fig 7, the set of
opposite boundsy swfaces vertical to the x axis
respectively, do not remain plane after deformation and

(b} Deformation of negatrve
awrface vertical to 2 avs

the waped deformation has ocoured (the magnified
factor of the deformation is 50 times). The same warped
deformation ocowrs  simudtanecusly at the opposite
boundary sutfaces vertical to the v axis. Howewer, the
warped deformation extert at the opposite boundary
surfaces wvertical to the = axisis relatively weak From
Fig. & and 7, the FEM based on the periodicad
displacement bounday  conditions  guarantees  the
displacement contimuty at the opposite sufaces between
the neighboring BVE s,

By anslyzing the mynerical results of the model, all
the stress componerts at the corresponding parallel
boundaty swfaces have the wiform stress distribuotion.
For example, Fig £ show s the maritmum principal stress
nephogram of the whole FEL, the wans and the resin
matrix pocket in the model subjected to loading case 3.
The traction cordirmity at the corresponding parallel
boundary sirfaces has been guaranteed and satisfied the
petiodic condition From Fig 2| it can be seen that the
stress in yarng is about 20 times than thet in the mateix
pocket region. This indicates that the yamns of 3D 4-
directional braided composites share the primary tensile
load As shown in Figo 8 o, stress concentration is
produced in the contacting region bebar een the yatns and
the moatrix pocket. The closer to this region, the gredter
stressis produced
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(a) Deformation of positree
autface vertizal to x ava

Fig 7: Deformation of the model under loading case &

200 15531562 2007

i) Deforation of negative
sutface vertical o x axs

[£) Hesin manm

Fig &: Maximal pritcipal stress nephogram of the tmoodel o2 under loadind caze 3

Discussion on the effective properties of 3D hraided
composites: The unit cell of 3D 4-directional traided
composites produced by the dstep 1x1 rectangidar
braiding procedures can be characterized by two
itdependent micto-strucharal parammeters, incuding the
braiding angde and the fibervdume fraction In this
sectiory, the effects of the two parameter s on the effective
elagtic properties of 3D traided composites are studied
with the meso-mechanical FELL. The models were
established as shown in this study. The width of it cell
WV iz asaumed to be 230 mm in the models The models
with differert fiber-wolume fractions under a same
braiding angle are obtained by defiring the fiber-wolume
fraction of the warn from Eg. 7. The elastic properties of
fiher s and matrix are showen in Table 2.

Figure 9 shows the variation of the predicted elastic
cotistarts of 30 braided composites with the increasing
braiding angle including tlwee samples with differerd

fiber-wolime fractions. Figwe 9 a  describes that the
elagtic modulus E_ decreases sharply as the brai ding angle
incteases. With the fibet-wolume fraction increasing, the
elagtic moddus E_incteases ag a whole. However, when
the braiding angle is small, the change of the elastic
modulus E_ caused by the incremert of fiber-volume
fraction becotmes conparatively significant. Figare 9 b
gives that the elastic modulus, E, or B (E, = EJ, waties
with the braiding anzle. The dastic modulus B, increases
steadily as the braiding angle inereases With the fiher
volwre fraction increasing, the elastic modulus E,
ificreages in a similar tendency. Figare @ 0 depicts that
the shear modulus G, inereases moonotonde slly with the
ifereasing braiding angle. As the fiber-volune fraction
increases, the shear modulus G, increases. When the
braiding angle is ahowt 40 deg, the change of the shear
modulus G caused by the increm ent of the fiber-volume
fractiotiis cothparatively larger with increasing the fiber-
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Fig. 9: Variation of engineering elastic constants with structural parameters

olume fraction. Figure 9 d presents that the shear
modulus, G, or G, (G,, = G,,), firstly increases and then
decreases. With the increase of the fiber-volume fraction,
the shear moduli, G, and G, increase. Figure 9 e-f shows
that the variation of the Poison’s ratios, v, and v, (v, =
V,), with the braiding angle. With increasing the
braiding angle, v,, firstly decreases and then increases;
v, and v, firstly increase and then decrease. As the fiber-
volume fraction increases, the Poisen’s ratic v,
decreases. With increasing the fiber-volume fraction, the
Poison’s ratios, v, and v ,, increase.

As shown in Fig. 9, the effective elastic properties of
the composites have been wmfluenced by the two

structural parameters. Therefore, optimization of the
structural parameters can help to reduce the design time
and save the manufacture costs.

CONCLUSION

A new finite element model based on the RVE is
proposed to predict the effective elastic properties and
the meso-mechanical behaviors of 3D braided composites.
The 3D model takes into amount the periodical structure
of the composites and the interaction between braiding
yvarns. The predicted effective elastic properties are
compared favorably with the experinental data,
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demonstrating the applicability of the meso-mechanical
FEM. Meanwhile, the method proposed is convenient to
predict the effective global stiffness of 3D braided
composites. The effect of the braiding angle and fiber-
volume fraction on the engineering elastic constants has
been discussed in detail. The results show that the elastic
modulus E_ i1s influenced significantly by the braiding
angle. By analyzing the stress distribution and
deformation, it is proved that the model guarantees the
displacement continuity and the traction continuity at the
surface boundaries of the neighboring RVEs. The RVE-
based finite element model can obtain a reasonable stress
field in the meso-scale.

Future research will focus on the strength and failure
analysis of 3D 4-directional braided composites by using
the meso-mechamcal FEM.
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