Journal of Engineering and Applied Sciences 3 (10): 766-773, 2008
ISSN: 1816-949X
B © Medwell Journals, 2008

A Novel Temporal Partitioning Algorithm for Run Time Reconfigured Systems

"Bouracui Ouni, 'Ramzi Ayadi and *Mohamed Abid
"Laboratory (E. M), Faculty of Sciences at Monastir, 5000, Monastir, Tunisia
*C.E.S, National Engineering School of Sfax, (ENIS), B.P.W. 3038, Sfax, Tunisia

Abstract: This study focuses on introducing a new temporal partitioning algorithm. Tt divides the input task
graph model into an optimal number of partitions and puts each task in the appropriate partiton in order to
decrease the transfer of data required between partitions of the design. However, typical scheduling algorithms
focus on minimizing the overall latency of an input target graph.

Key words: Temporal partitioning,, reconfigurable computing system, algorithm architecture adequacy

INTRODUCTION

The reconfiguration capability of the Run Time
Reconfigured (RTR) systems can be used to perform a
large application by partitioning the application over time
into multiple segments. The division of an application into
temporal segments that are configured one after the one
is called temporal partitioning. The first temporal partition
receives input data, performs computations and stores
the intermediate data into the on-board memory. The
device 1s then reconfigured for the next segment, which
computes results based on the intermediate data, from the
previous partition. This process 1s repeated until all the
partitions are executed. The RTR system consists of a
reconfigurable area (usually based on dynamically
reconfigurable FPGA) communicating with an external
memory. Each temporal partitioning is mapped to the
reconfigurable area and the data flowing between two
temporal partitons i1s mapped to the memory. A Host
interacts with both the reconfigurable area and the
memory and 1t used to load new configurations and to
store the intermediate data in the memory. In this study,
we consider that we have an available reconfigurable
hardware area which should be exploited for the
umnplementation of a given algorithm. This area constraimnt
presents a problem, which may be caused by global
consideration related to the system and the application
constraints (e.g., when it requires more than available
reconfigurable area). Or for the fact that the system 1s
already existed and no extensions are possible, whereas
adding a new service or a modification in the existing
application is required. The typical idea consists in
partitioning the application over time into multiple
segments. In the temporal partitioning field, the main
objective of related works 1s either to find the minimal size

of reconfigurable area to accomplish the graph within a
fixed limit of time or to find the minimal execution time of
the mnput graph on a fixed-size of area (Kaul and Vermuri,
1999; Cardoso and Neto, 1999; Heng and Ronald, 2005,
Bobda, 2003, 2007, Chang and Sadowska, 1999). However,
the proposed approach focuses on minimizing the
required data trensfer between different temporal
partitions of the design. Thus, the main objective of the
study, consists m introducing a temporal partitiomng
algorithm which divides the input task graph model to an
optimal number of time partitions and puts each task in
the appropriate partition in order to decrease the transfer
of data between partitions.

DEFINITIONS

Task graph: Considering a set of tasks V = {T1, T2,...,
Tk}, a task graph model Ouaiss ef al. (1998a) 15 defined by
the couple

G=(V,E)
where:
V = The nods set
E = Thearcs set

An are, e = (T,T]) € E, defines a dependence of data
between task Ti task and the task Tj. According to this
model, a task 1s an abstraction of a behavioural algorithm
that should be implanted in a same partition.

Task parameters: Considering a set of tasks V =(T1,
T2, ... Tn), the characteristics of a task T1 are:

A (Ti): The area occupation (surface) m CLB of the task
Ti. This surface can be gotten by using a synthesis tools
(Kaul et al., 1998; Xu and Kurdahi, 1998).

Corresponding Author: Bouraoui Ouni, Laboratory (E.u. M), Faculty of Sciences at Monastir, 5000, Monastir, Tunisia

J. Eng. Applied Sci., 3 (10): 766-773, 2008

L (Ti): The time of execution (latency) of the Ti task. This
parameter can be also gotten by using a synthesis tools.

Arc parameters: An arc e = (T1; T}) € E, noted by T1 — T}
defines the dependence of data between the task Ti and
the task Tj. The arc characteristics are:

B (Ti,Tj): The quantity of data that should be transferred
from the task Ti toward the task Tj.

L (eij): The necessary time to transmit a quantity of data
from given from the task Ti toward the task Tj.

Temporal partitioning: The temporal partitioning is the
division, under one or several constramts, of a graph

G (V, E) to a set of disjointed partitions P = {P1, P2...
"Pn"? such as:

. P =P
where, VP, € P, we have

Y A(Ti) < Rmax
TieFe

A (T1) represents the area of the task Ti, R . represents
the area constraint.

Connectivity: The connectivity (Con (G)) of a given
graph G (V, E) 1s the relation of number of edges in G over
the number of all edges which can be built with the
nodes of G.

Con (G) = (2Ng) / (Ny (Ny-1))

where:
Neg = The number of edges
N, = Thenumber of nodes n G

Quality: Given a graph G and a set of time partitions
{Py, Py... P}, the quality (Q (G)) of the graph G is
calculated as follows:

QG) = %21“ Con(Pi);

N is the number of partition

The quality 15 a good way to evaluate the
performance of a given temporal partitioning algorithm in
term of data transfer. Indeed, if the algorithm assigns
dependent tasks to a same partition, then the quality
will be high and the commumcation cost will be low. The

767

Partitionning with Q = 0.8333

Fig. 1: Example of two temporal partitiomng

algorithm performs well because it minimizes the set of
memorization resources used to save data during the
reconfiguration of the reconfigurable area. However, 1if the
algorithm assigns dependent tasks to different partitions,
then the quality will be low and the communication cost
will be high The algorithm would be bad because it
maximizes the set of memorization resources used to save
data during the reconfiguration of the reconfigurable area.
InFig. 1, we present an illustrative example, without taking
care of any constramt, of two temporal partitioming. In the
Fig. 1la the result of temporal partitioning uses seven
access (red arrows) to the external memory. However, in
the Fig. 1b the result of temporal partitioning uses only
three access to the external memory. Therefore, we favor
the second algorithm if we have a major constramt on the
external memory.

CONSTRAINTS

The behavior specifications are in form of task graph.
For each task, High Level Synthesis (HL.S) tool generated
the synthesis cost in terms of the resource requirement
and execution delay of task. Typically, a temporal
partitioning problem 1s developed under these
constraints.

Riuxt The resource capacity of the reconfigurable area:
The sum of resource cost of all the tasks mapped to a
temporal partition must be less than the overall resource
constramt of the available reconfigurable area.

Precedence constraint: This constraint can be defined as
follows: If a task T2 depends on a task T1. Then the last
should be placed the first.

Uniqueness constraint: According to this constraint,
every task should be placed in a unique partition.

M,.: The temporary on-board memory: Data transfer
across partition boundaries will occur due to two
dependent tasks being placed in deferent temporal

J. Eng. Applied Sci., 3 (10): 766-773, 2008

partition. This intermediate data needs to be stored
between partitions and should be less than the memory
constraint, M, ., of the reconfigurable device.

RELATED WORKS

In the literature, early researches in synthesis field
solved the spatial partiiomng problem (Cupta and
Demicheli, 1990; Abid, 2000). With the introduction of
reconfigurable systems several approaches are mteresting
in this new field. These studies are interested in solving
some problems that appear during the design process for
reconfigurable systems such as the temporal partitioning
problem.

ILP technique: The "ILP" Kaul et al. (1998) and Byungil
(1999) is one of the most approaches that used to solve
the temporal partitioning problem. This techmique
introduces a variable "Y.", where "Y_" =1 if the task " T"
1s placed in partition p, otherwise "Yr," = 0. The inputs of
the "TLP" approach are: The lower bound and the upper
bound on partitions number. Memory and area
constraints. The dependencies between tasks. The
number of data unit communicates between tasks "T," and
"T," and the area of each task. The aim of the "ILP"
approach consists n finding the optimal solution in term
of latency for the temporal partitioning problem, while
satisfying imposed constraints. The main limitation of the
"TLP" approach is its very high execution time, which
hardly gives solutions for a graph which has several
nodes.

List scheduling technigue: The list scheduling algorithm
is used by Cardoso and Neto (1999), Chang and
Sadowska (1998) and Puna and Bahitia (1999) to solve the
temporal partitioning problem. The main 1dea of this
method consists in placing all nodes of the graph on a list.
The first partition 1s built by removing nodes from the list
to the partition until the size of the target FPGA is
reached. Then, a new partition 1s built and the process is
repeated until all nodes are placed in partition. This
techmque is often oriented by the ASAP and/or the
ALAP scheduling. Tn Pandey and Vemuri (1999) the
authors put a node 1n the list as soon as all predecessors
have been placed in the list. However, in Quaiss et al.
(1998b) the authors place a node in the list as soon
as all successors have been placed in the list.
The mam advantage of the list scheduling technique
is the very fast run time of its algorithm (Cardoso and
Neto, 1999, Bobda, 2003). However, the performance
of this technique is lower than the performance of the
Chang and Sadowska (1999), Oum (2008) and Bobda
(2003).

768

Dynamic algorithm: The dynamic algorithm Ouni et al.
(2005) 1s composed by two main steps: Finding the
minimal number of partitions (N,;,) and the maximal
number of partiton (N,,.). Realizing a schedule of the
tasks in this minimal mumber of partition in order to reduce
to the latency of the application. The principle steps of
this algorithm are presented in Fig. 2. This algorithm is a
good candidate for the temporal partitioning problem, but
its main limitation is its high execution time.

Proposed temporal partitioning algorithm: As we remark
the typical scheduling algorithms m this field are focused
only on minimizing the overall latency of the design and
do not consider the memory as a major constraint. For this
reason, in these techniques, each partition includes
several parallel tasks. So, if the exchanged data between
partitions is important, the memory constraint becomes
difficult to reach before building several partitions or
adding other resources (memories, registers) to handle the
shared data between different partitions. Hence, the
introduction of new temporal partitioning algorithms, as
presented n this section, which focus on minimizing the
data transfer required between different time partitions of
the design, represents a very unportant 1ssue in computer
aided design of Reconfigurable Computing Systems. The
proposed algorithm divides the input task graph model to
an optimal number of partitions and puts each task in the
appropriate partition 1n order to decrease the
communication cost between design partitions. To attain
this aim, we should maximize dependent tasks in each
partition. For this reason we built a dependency list for
each node (line 3). Then our algorithm puts a note in
target partition and it removes notes from its dependency
list (line 12) to this partition until the size of the available
reconfigurable area 1s reached. We should note that the
algorithm 1s based on this hypothesis:

v T, e (1, Ny), we have A (T) < A,

where:

A(T) The area of task T,

Nv = The number of task in G
A = The area constraint

c

Now, we provide the description of our proposed
temporal partitioning algorithm. First, all nodes of the
graph are mserted according to thewr priorities on a List-
nodes (line 1). Tn this algorithm we follow steps presented
by David (1999) and Chang and Sadwska (1999) to
calculate the priority of each node in the task graph
model.

Then the algorithm builds for each node "ni" a
List_dependency node"m" (line 3). This list 1s calculated
as follow:

J. Eng. Applied Sci., 3 (10): 766-773, 2008

|ASPA and ALAP scheduling (step 1)|

| Finding the immobile tasks (step 2) |

Estimation of N, (step 3)

v

-
“*

Generation of first scheduling
i=1)(step 4

h

Keep N,
—
!

r

Generation of the
scheduling (i+1)
step 4

Finding the optimal
scheduling (step 6)

Fig. 2: Dynamic algorithm

Dep_list (ni) :{ 0,

n 1
JJ]:I To ¥

n,

n n.
)

where, @; =1 if node
otherwise @, = 0.

Next the algorithm puts the first node "ni" from the
List-nodes in the first partition (4, 6, 7 and line 8). Then
the algorithm displaces nodes from the List
dependency node"ni" to this partition until the size of
the available reconfigurable area is reached (9, 10, 11, 12,
13 and line 14). Next the algorithm mserts this partition in
a List patitions (line 15). If there 13 at least one node in
the List-nodes (line 5) then the algorithm repeats the
previous process (6,7, 8,9,10,11,12, 13, 14 and line 15).

depends on node "n

CASE STUDY

The Color Layout Description "CLD" is a low-level
visual descriptor that can be extracted from images or
video frames. The process of the CLD extraction consists
of four stages, the image partitioning, the selection
of a single representative color for each block, the DCT
transformation and the non linear quantization and Zig

Violation of
constraints
(step 5)

769

Zag scanming (Kaul ef al., 1998). Smce, DCT 1s the most
computationally intensive part of the CL.D algorithm, it
was often chosen to be implemented in hardware and the
of subtasks (partitioning, selection,
quantization, zig-zag scanning and Huffman encoding)
were often chosen for software implementation. The
model proposed by Kaul et al. (1998) is based on 16
vector products. Thus, the entire DCT 1s a collection of 16
tasks, where each task 1s a vector product. There are 2
kinds of tasks in the task graph proposed by Kaul et al.
(1998), "T," and "T,", whose structure is similar to vector
product, but whose bit widths differ.

In this study, we use four algornthms m order to
divide each of 16 task graph. We use the TLP algorithm,
the list scheduling algorithm, the dynamic algorithm and

rest color

the proposed algorithm. In each case, we evaluate the
performance of each algorithi in terms of quality in terms
of words stored in each partition and in terms of whole
latency. In this study, we only considered the latency
{execution time) of tasks to calculate the whole latency
of the design We not considered the time needed for
communication between the design partitions. The 16

J. Eng. Applied Sci., 3 (10): 766-773, 2008

DCT task graph, shown in Fig. 3, is chosen to be
umplemented within several available reconfigurable areas.
We note that we used our {ramework to draw those
graphs (Ouni et al., 2004; Ouni, 2008). We associate three
parameters for each task, the first parameter its occupation
area, the second 1s its latency, the third is its energy
consummation. The later 1s usually equal zero because we
disregard it in this study. The area and the
computation time of each task shown in Fig. 4 are taken
from Kaul et al. (1998). The Table 1 and Fig. 5 give the
different solutions provided by the list scheduling, the
"TLP" technique, the dynamic algorithm and the proposed
algorithm for the temporal partitomng problem. For the
llustrated examples, results show that our algorithm
decreases very better the communication cost than the
others algorithms. Indeed, the quality given by our
algorithm 1s too greater than the quality given by others
techmque. And the number of words stored in each
partition 1s always the lowest. Thus, our algorithm can be
qualified to be a good candidate if designers aim to reduce
the communication cost in the design.

<.
@ @

1: List-nodes = generate-node_list_with priority (G)
2: For (i=1; i<Ny;it+)

{
3 List_dependency node(ni) = generate

List_dependency_node(ni) with priority (G)

4: k=1

5: While (list nodes=®)

6: Node (ni) = first no removed node from List node
7 Partition (k) <= (node (1))

8: Size partition (k) = size node(ni)

9: (next-node) <=0

10: Next node size =10

11: While (size_partition(k)}tNext_node.size()z A.)
12: Partition (k) <= (next_node);

13: (next-node) <= first no removed node from
List_dependency_node(ni)

14: Next node.size=size of first no removed node from

List_dependency_node(ni)

15: List_patitions<=partition (k);
16: k=k+1
}

Fig. 3: Proposed algorithm

Z[220,625,0, Begin depend A
3[275,840,0], 13

£[275,840,0, L4

5[220,625,0], 23

62206250, 24

TRIR400; 37
£[275,340,0];
S[220,62501, g
10420,62505 51,
1:[275,8400F g2
1227584005 1011
13:[220,6250L 10:12
14:[220,625,05 13:15
15:[275,840,05; 13:16
16:1275,840,05; 14:15

Fnd tok 14:16
G @ D ‘ &
[t Agpliuer)|
Fig. 4 DCT task graph
Table 1: Design result
List scheduling Proposed algorithm ILP algorithm Dynamic algorithm
Area (CLB) 1200 1200 1200 1200
Number of partitions 4 4 4 4
Tasks in partition 1 T1,T2,T5,T6,T9 T1,T2,T3,T4 T1, T2, TS, T6, T1,T2,T5,T6,TO
Words stored in partition 1 10 words 2 words 8 words 10 words
Tasks in partition 2 T3, T10, T13, T14 TS, T6, T7, T8 T9, T10, T13, T14 T10, T13, T14
Words stored in partition 2 7 words 2 words 8 words 6 words
Tasks in partition 3 T4, T7, T8, T11 T9, T10, T11, T12 T3, T4, T7, T8, T3, T4, T7, TS,
Words stored in partition 3 4 words 2 words 4 words 4 words
Task in partition 4 T12, T15, T16 T13, T14, T15, T16 TI1,T12, T15, T16 T11,T12, T15, T16
Words stored in partition 4 3 words 2 words 4 words 4 words
Whale latency 3145+3% 5860+3* 2030+3% O 2030+3* O
Quality 0 0,66 0 0
Area (CLB) 1400 1400 1400 1400
Number of partitions 3 3 3 3
Tasks in partition 1 T1, T2, T4, T5, T6 T1,T2,T3,T4 T1, T2, TS, T6, T1,T2,T5,T6,TO
Words stored in partition 1 7 words 2 words 8 words 10 words
Tasks in partition 2 T3, T7, T8, T, T10 TS, T6, T7, T8 T9, T10, T13, T14 T10, T13, T14
Words stored in partition 2 7 words 2 words 8 words 6 words

770

Table 1: Continued

J. Eng. Applied Sci., 3 (10): 766-773, 2008

List scheduling Proposed algorithm ILP algorithm Dynamic algorithm

Tasks in partition 3 T11,T12, T 13,114 T9, T10, T11, T12 T3, T4, T7, T8, T3, T4,T7,T8,

Words stored in partition 3 6 words 2 words 4 words 4 words

Number of partitions T16, T15 T13, T14, T15, T16 TI1,T12, T15, T16 T11,T12, T15, T16

Quality 0,05 0,66 0 0

Whale latency 3985% Cy 5860+3* 2030+3% O 2030+3* O

Area (CLB) 1600 1600 1600 1600

Nurmber of partitions 3 3 3 3

Tasks in partition 1 T1,T2,T5,T6 T, T10, T3 T1,T2,T3,T4 TS, T6 T1,T2, TS, T6, T1,T2, TS, T6,

T9.T10, T13 T9.T10, T13
Words stored in partition 1 11 words 6 words 14 words 14 words
Tasks in partition 2 T13,T14,T4,T7, T8, T15 T7T8T19T10, T11, T12, T14, T3, T4, T14,T11, T3, T4,
T7, T8 T11 T7, T8,

Words stored in partition 2 6 words 4 words 7 words 7 words

Tasks in partition 3 T11, T12, T16 T13, T14,T15, T16 T12, T15, T16 T12, T15, T16

Words stored in partition 3 3 words 2 words 3 words 3 words

Whole latency 3770 ns+ 3* Cr 43950 + 3* O 2305 +3% ¢ 2305 +3+* ¢

Quality 0,07 0,39 0 0

Area (CLB) 2050 2050 2050 2050

Nurmber of partitions 2 2 2 2

Tasks in partition 1 T1, T2, T4, TS, T6, T1,T2,T3,T4, T1, T2, TS, T6, TO, TS5, T6, T9, T10,
T9, T10, T13, T14 T5 To, 1T7, T8 T10, T13,T14, T3 T13, T14,T1, T2, T3

Words stored in partition 1 15 words 4 words 15 words 15 words

Tasks in partition 2 T3, T7,T8,T11, T9, T10,T11, T12, T4, T7, T8, T11, TI11,T12, T15,
T12, T15, Tlg T13, T14,T15, T16 T12, T15,T16 T16,T4,T7, T8,

Words stored in partition 2 7 words 4 words 7 words 7 words

Whole latency 2305+2*% Cp 2930+2% Cp 2305+2*% Cp 2305+2*% Cp

Quality 0,02 0,28 0,02 0,02

Area (CLB) 2400 2400 2400 2400

Nurmber of partitions 2 2 2 2

Tasks in partition 1 T1, T2, T3, T4, TS, T1, T2, T3, T4, T1, T2, TS, T6, TO, TS, T6, T, T10, T13,
T6, T7, T8, T¢ TS, T6, T7, T8 T10, T13, T14, T3, T4 T14, T1, T2, T3, T4

Tasks in partition 2 T10, T11, T12, T13, T9, T10, T11, T12, T7, T8, T11, T11, T12, T1S,
T14, T15, T1g T13, T14,T15, T16 T12,T15,T16 T16,T7, T8,

Whole latency 2930+2% Cp 2930+2% Cp 2305+2*% Cp 2305+2*% Cp

Quality 0,25 0,28 0,04 0,04

Area (CLB) 2500 2500 2500 2500

Number of partitions 2 2 2 2

Tasks in partition 1 T1, T2, T3, T4,T5, T1, T2, T3, T4, T1,T2,T5Té6, T9, T5, Te,T9, T10, T13,
T6, T7, T8, T, T10 TS, T6, T7, T8 T10, T13, T14, T3, T4 T14, T1, T2, T3, T4

Words stored in partition 1 8 words 4 words 14 words 14 words

Tasks in partition 2 T11,T12, T13, T9, T10,T11, T12, T7,T8,T11, T11,T12, T15,
T14, T15, T1g T13, T14,T15, T16 T12,T15,T16 T16,T7, T8,

Words stored in partition 2 4 words 4 words 6 words 6 words

Whole latency 2030+2% 2030+2% 230542% 2305+2%

Quality 0,22 0,28 0,04 0,04

Area (CLB) 2800 2800 2800 2800

Number of partitions 2 2 2 2

Tasks in partition 1

Words stored in partition 1
Tasks in partition 2

Words stored in partition 2
Whole latency

Quality

Area (CLB)

Nurmber of partitions
Tasks in partition 1

Words stored in partition 1
Tasks in partition 2

Words stored in partition 2
Whole latency

Quality

T1, T2, T3, T4, T5, Té,
T7, T8 TOT10, T13

8 words

T14, T11,T12,,T15, T16
6 words

2030+2%

0,20

3000

2

T1, T2, T3, T4, TS5,

T6, T7, T8, T9,
T10,T11,T12

6 words

T13,T14, T15, Tlé

2 words

2030+2%

0,42

T1, T2, T3, T4, T5, Té,
T7, T8 T9, T10, T11

7 words

T12, T13, T14, T15, T16
3 words

2030+2%

0,20

3000

2

T1, T2, T3, T4, TS5,
T6,T7, T8T9,
T10,T11,T12

6 words

T13,T14, T15, Tlé

2 words

2030+2%

0,42

T1, T2, TS5, Té, T9, T10,
T13,T14, T3, T4, T7,
13 words

T8, T11, T12, T15, T16
5 words

230542%

0,05

3000

2

T1, T2, T5,Té,

T9, T10, T13, T14,

T3, T4, T7, T8

12 words

T11,T12, T15, T16

4 words

2305+2%

0,06

T5, Te, T9, T10, T13,
T14, T1, T2, T3, T4, T7
1 3 words

T11, T12, T15, T16, T8
5 words

2305+2%

0,05

3000

2

T35, Te, T9, T10,
T13,T14,T1, T2,

T3, T4, T7, T8

12 words
T11,T12,T15, Tlé

4 words

2305+2%

0,06

771

J. Eng. Applied Sci., 3 (10): 766-773, 2008

0.8
O Proposed algorithm
0.6 B ILP algorithm
B o List scheduling
g 04
0.2
0
1200 1600 2400 2800
Area (CLB)
Fig. 5. Quality = f (area)
CONCLUSION

In this study, we have mvestigated the temporal
partitioning used for reconfigurable systems. A new
algorithm 1s introduced; it has the advantage of bemng
able to divide the input task graph onto set of time
partitions while decreasing communication cost
between the design partitions. However, previous works
mterested in the temporal partitiomng field were
algorithms, such as ILP, List scheduling,

network flow, which divide the input graph while

mntroduced
mimmizing the whole latency of target application
without considering the memory constraint. To better
llustrate the efficiency of our technique, we devote a
part of this paper to implement some practical examples,
such as DCT task graph, by using our temporal
The studied evaluation cases
very
significant results m terms communication cost versus
other well known algorithms used in the temporal

partitioning algorithm.

show that the proposed algorithm provides

partitioning field.
REFERENCES

Abid, M., 2000. Contribution for mixed software/hardware
electronic systems design, Thesis of state, National
school Engineers of Tunis, Tunisia.

Bobda, €., 2007. Introduction to Reconfigurable
Computing Architectures, Algorithms and
Applications, Springer Publishers. TSBN: 978-1-4020-
6088-5 (HB), (e-book), pp: 362.

Bobda, C., 2003. Synthesis of Dataflow Graphs for
Reconfigurable Systems using Temporal Partitioning
and Temporal Placement, Thesis 2003, Faculty of
Computer Science, Electrical Engineering and
Mathematics of the University of Paderborn Germany.

Byungil, J., 1999. Hardware software partitioning for

reconfigurable architectures, MS Theses School
of Electrical Engineering, Seoul National
University.

772

Cardoso, I.M.P. and H.C. Neto, 1999. An enhance static-
list scheduling algorithm for temporal partitioning
onto rues. TFTP TC10 WG10.5 10Int. Conf. Very Large
Scale Integration{ VI.SI"99), Portugal, pp: 485-496.

Chang, D. and M. Sadowska, 1999. Partitioning Sequential
Circuits on Dynamically Reconfigurable FPGAs. TEEE
Trans. Comput., 48 (6) 565-578.

Chang, D. and M. Sadowska, 1998. Partitioning sequential
circuits on dynamically reconfigurable FPGAs,
International Symposium on Field Programmable Gate
Arrays (FPGA 98), Monterey, Califorma, pp: 161-167.

Cupta, R. and G. Demicheli, 1990. Partitioning of
functional models of synchronous digital systems.
Computer-Aided Design, ICCAD, Digest of Technical
Papers TEEE International Conferenceon Stanford
University, CA, USA,, 77: 216-219. ISBN: 0-8186-
2055-2.

David, R., 1999. Synthese de la transformation en
ondelette par 1”outil monet, mastre these preparee au
sein de laboratoire LESTER. France, soutenu le 23
juin.

Heng, T. and F.D. Ronald, 2005. A Device-Controlled
Dynamic Configuration Framework Supporting
Heterogeneous Resource Management. In: Proc.
Eng. Reconfigurable Syst. Algorithms (ERSA 2005),
Las Vegas, pp: 251-254.

Kaul, K. and R. Vermuri, 1999. Integrate Block processing
and design space exploration in temporal
partitioning for RTR architecture. In: Reconfigurable
architecture workshop, RAW’99. Springer
Publication, pp: 606-615.

Kaul, K., R. Vermuri, 3. Govindarajan and I. Cuaiss, 1998.
An automated temporal partittomng tool for a class of
DSP application, workshop and reconfigurable

computing 1 international conference on
parallel architecture and compilation technique PACT,
pp: 22-27

Ouaiss, I., 5. Govindarajan and V. Stinivasan, 1998a. A
unified specification model for concurrency and
coordination for synthesis VHDL, international
conferences on information systems, analysis and
synthesis TSAS 1998, pp: 771-778.

Ouaiss, [, S. Govindrajan, V. Srimivasan, K. Kaul and R.
Vermury, 1998b. An integrated partitomng and
synthesis system for dynamically reconfigurable
multi-FPGA architectures, TPPS/SPDP workshops,
pp: 31-36.

Ouni, B., 2008. Synthese et partitionnement temporel pour
les systemes reconfigurables, These umversitaire,
Faculte des Sciences de Monastir, Tunisie, Fevrier.

Oum, B., A Mtibaa and M. Abid, 2004. Temporal
Partitioning Framework for fully Reconfigurable
Systems. The 16th Int. TEEE Conf. Microelectronics,
TCM, Gammart, Tunisia, pp: 742-745.

J. Eng. Applied Sci., 3 (10): 766-773, 2008

Ouni, B., A. Mtibaa and M. Abid, 2005. Synthesis and Puna, K. M.G. and D. Bahitia, 1999. Temporal partitioning

time partitiomng for reconfigurable system. Design and scheduling data flow graphs for reconfigurable
Automation for Embedded Syst. J., 9: 177-191. computers. ITEEE Trans. Comput., 48 (6): 579-590.

Pandey, A. and R. Vemuri, 1999. Combined temporal Xu, M. and F. Kurdahi, 1998. Layout driven high level
partitiomng and scheduling for reconfigurable synthesis for FPGAs Based architecture. Proceedings
architectures technology FPGA for computing and of the Conference on Design, automation and test in
application. Proceeding of the SPTE 3844, pp: 93-103. Europe. TEEE Computer Society Washington DL.
DOIL: 10.1117/12.359528. USA., pp: 446-450. ISBN: (0-8186-8359-7,

773

