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INTRODUCTION

Let A 15 a closed operator in the Banach space E with
dense determination area D(A) in E. Let’s consider the
differential Malmsten equation within the interval [0,1]:

w(t)+ %u'(t) + tizu(t) —tAu(t)kLmer (D

Let”s seek the solution u (tHec” ([0,1], Eyn C ((0,1],
D (A) of the Eq.1, satisfying nonlocal integral condition:

P u(t)=u, (2)

where Pp>0, I°,, Erdeyi-Kober operator defined by the
following formula (Samko et al., 1993; Kilbas ef al., 2006):

dg

1P u(t):W

a,v

j.sc“’“”l (t“I —s”)ﬁ_l u(s)ds
1]

Generally speaking, the problem Eq. land 2 with
the non-local condition in Eq. 2 1s not correct. In this
study they set out the conditions imposed on the
operator A and the component UgE, providing its unique
solubility.

Among the publications devoted to the study of
nonlocal problem solution with the mtegral condition for
abstract differential equations of the first order, let’s note
the publication (Tikhonov, 1998); (Sil’chenko, 2008). The
criterion of umiqueness for the solution 1s set in
(Tikhonov, 2003). Concerning the non-local problem in Eq.
1 and 2 it 1s considered for the first time.

Along with the Malmsten eq.1 at k>0 let’s consider
Euler-Poisson-Darboux  equation (a special case of
Malmsten equation at 1 = m = 0):

w(t)+ Sul(r) = Au(t). 1 (0.) 3)

According to the results of the research by (Glushak
(1997 and Glushak (201 &) the correct formulation of imtial
conditions for the Euler-Poisson-Darboux eq.3 is to set an
initial value at the point t = 0:

u(0)=u,e D(A) )

and the condition:
u'(0)=0 (5

which is not set (removed) at k=1, that is typical for a
mumber of equations with the peculiarity in the
coeflicients at t = 0.

The research by Glushak (1997) and Glushak (2016)
also provide the conditions for the operator A to ensure
that correct solution of the problem in eq.3-5. The set of
operators A with which the problem in Eq.3-5 1s uruformly
correct, 18 denoted by G,

In particular, if the operator A is limited, then AeG,
and the problem in Eq. 3-5 has the following form:

(t/2)" Ay,
= I((k+13/2+)
u(t)_yk(t)uu_r(k“]zl [ee)2+i) g
2 i3 (k41 ¢ ]
Bl —i—A u,u,€E
2 74
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where {O) gamma function, Ip F lq (O generalized
hypergeometric functionu,DA. In the case of an
unbounded operator A€, at the solution of the problem
i Eq.3-5 has the following form (Glushak, 1997; Glushak
and Pokruchin, 2016):

2(k—1)12r[(k+1)12)

[3-k}2

Ttiee

u(t) =Y, (t)u, :W o )

l(k—l)fz (t;\')R(;\»Z )Uud)\a,(j > (0,

where 1! v (O-modified Bessel function, A° at ReA>w=0
belongs to the resolvent set p (A) of the operator A and
QUOTER (4% = (A'21-A)' (-1) its resolvent. The formulae
Eq. 6 and 7 denote the Operator Bessel Function (OBF)
resolving task operator Eq. 3-5 via Y, (t).

The work (Glushak and Pokruchin, 2011) showed that
OBF Y, (t) may be used for the Eq.1 development of
Cauchy problem weight solutions for Malstem abstract
Eq. 1 (classical Malmsten equation 15 considered in
(Watson, 1945) and the following theorem 1s proved.

Theorem 1: Let p = ,uD (A) and the operator Ae G,

Then the function:

2t(m+z)fz

m+2

u(t):t(17k+u(m+ 2)/2m+1 (T)u, 7= (8)

is the only solution for Malmsten Eq. 1 satisfying the
following imitial condition:

lim [k-1-v(m+2)}/2
Hut( )

@)

u(t)

IlU:

It should be noted that under the assumptions of the
theorem 1, for the considered differential Eq. 1 of the
second order, as well as for Euler-Poisson-Darboux
equation with k=1, the second initial condition is not set
at t = 0. Cauchy weight problem with two imitial conditions
will also be discussed further. The studies concerming the
solubility of the problem in Eq. 1 and 2 are devoted to the
initial element obtaining in the term of Eq. 9 according to
non-local term m Eq. 2. At that the following function will
play an important role:

x(klLm,Bovh)=

o D(wt )0(v+1{{m+2)(u+ 2§)
21':” JI(u+1+ 0 P+v+1+

+1-2)/(20) {2/ (mo+ 2)7)
((m+2)(p.+ 2j)+1-k})/(20))

908

which 1s called the characteristic function of the non-local
conditions in Eq. 2 and which will be denoted x (&3;A)
rew=(k Lm, B,o,v)

where

Theorem 2: Tet>0, u =0, 0 >0, 20 (v+1 )+ p (m+2)+ 1-k >
0, A-the limited u operator and E. In order to make eq. 1
and 2 have a unique solution, it is necessary and
sufficiently that the following condition was satisfied on
the spectrum o (A) of the operator A:

x(mA)20,he o(A) (10

Proof: In order to find the initial element u included in the
Eq. 9 for the function u (t) defined by the Eq.6 and 8
Erdeyi operator-Kober operator is used.1’,, We obtain the
following after elementary transformations:

livu

(t) :lﬁ_vt(l ~k+u{m+ 2))

2t(m+2)!2
Jiypind _ _
(r)un [T m+2 J
(%) b ovtolH{1-ktp{m +2))/2
—| S
L{p)t°(B+ v)-[f'

2S(m+z)fz
m+2

(tc _g° )13-1 szﬂ{

}unds

(Au,/(m+2)2)
Z; PIT(r+14+j)
J-tscv+cs—1+(17k+u(m+2))f2 (tc _ge )B—l ds
1]

_ol{u+l)
B F(B)tc(ﬁw)

Calculating the last integral, we obtain the following
equation by the virtue of the condition of Eq. 2:

F(;L+1)F(v+l+((m+2)(;u+2_j)+lfk)/ B
(14 j)T{B+v+1+ (m+2)
(26))(Aug/(m+2)j)
(u+2/)+1-k)/(20))

X

(1)

Let £ is an open set of a complex plane containing
the spectrum o (A) of the limiting operator A, the
boundary of which 3Q consists of a fimte number of
rectifiable Jordan curves, oriented in a positive direction.
Then, putting down the representation via the resolvent
for the operator on the left side of Eq.11, let's rewrite of
Eq.11 in the following form:
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Bu, E‘[agx(m;l)R(k)uudk:ul (12)

Therefore, a necessary and sufficient condition for
the unique solvability of the problem m Eq. 1 and 2 with
the bounded operator A 1s the solvability of the Eq. 12,
1.e., the absence of the point A = 0 in the operator B
spectrum o (B). The Eq. 12 means that the operator B is an
analytic function of the operator AB = x (WA) .
According to the theorem about bounded operator range
reflection. ¢ (B) = x (0,0 (A)). Thus, the value A = 0 is not
the operator B spectrum point only when, it is not turned
into zero function x (,A) within the spectrum o (A) or
when the condition in Eq. 10 is performed which is the
sane.

When the condition in Eq. 10 is performed the mutial
element u, = B~ u, and the soluticn of the problem in Eq.
1 and 2 with the himited operator is defined by the in Eq.
8 and 6. The theorem is proved. In the case when the
parameters 0 and v are chosen in a special way, i.e. 0 =m
+2 and:

v=u/2+(k-1)/{2m+4)and* = 2,fA/{m+2)

e

“I{u+ I)ETHIM ()

2

x(ma) = D+ 1) B+M+I;ZI

- T(p+ ;.|.+1)D

where s, (z) modified Bessel function and the statement
1s true.

Theorem 3: Let p>0, 0 = m+2, v = wW2+k-1 (2m+4), A-
limited operator, u,. In order to make the non-local
problem (1), (2) have a unique selution at the specified
parameter values, it is necessary and sufficient that the
following condition was satisfied on the spectrum o(A) of
the operator A:

IM[ 2/ }# 0,h€ 6(A) (13)
m+ 2

If the conditions of the Theorem 3 are
satisfied and k= 1,1 = m = 0, then the non-local

problem n Eq 1 and 2 for Malmsten equation turns mto
a non-local problem for the Euler-Poisson-Darboux
equation, which was studied i (Glushak, 2016) and the
corresponding characteristic function in this case has the

following form:

x(W;K)—F[

k+1
2

2

(k—1)/24B
& sl

909

Therefore, the distribution and the asymptotic
behavior of the zeros A, = A (k-1)/2+p j = 1.2,... the
functions x (t;A) are known (Watson, 1945), chapter 15),
i.e.: all zeros are simple, negative and:

lim 1
sy = L
]

(14)

According to the proved Theorem 2 it follows that
the location of the function x (@;A) zeros determines the
unique solvability of the problem in Eq. 1 and 2 with the
limited operator . For the Eq. 1 with the unlimited operator
A the condition of the form of Eq.10 is no longer sufficient
for unique solvability, though the location of zeros also
plays an mmportant role.

Let’s establish then the necessary condition for the
uniqueness of the inverse problem m Eq.1 and 2 solution
with an unbounded operator A.

Theorem 4: Let n>0, A the closed linear operator in E.
Suppose that the non-local problem in Eq. 1 and 2 has the
solution u (t). In order to make this solution the only one
1t 1s necessary to ensure that ne zero A, j = 1, 2...of the
whole function x (@;4) 1s the own value of the operator A.
Proof. Suppose that some zero A, from the countable set
of function zeros x (@3;4) 1s the eigenvalue of the operator
A with the eigenwvector by, = 0. A direct verification shows
that the function:

ﬂ(t;ln):(l—k-#—p(m-#—Z))/z sz+1(T) =

2
AT

,T
4 }

Bt )+ B(t,)+ [ 0(tA,)

(1-k+u{m+2))/2 _ zt(m+2)f2

t

Elp+1
DI(H m+2

Is the scalar problem solution:

=L t7B(tA, ). tE (0,1],

lim lﬁ B

i—tlay (t;)‘*n ) =0

We note only that there is zero nonlocal condition as
A, the function zero x (t;A). Thus, the function u (t) = v
{t;Ay) h, is a non-zero solution of the homogeneous (1,=0)
non-local problem in Eq. 1 and 2. Thus the solution of the
problem in Eq. 1 and 2 is clearly not unique, if it exists.
The theorem is proved.

Now let’s turn to sufficient condition for unique
solvability of the problem in Eq. 1 and 2 with an
unbounded operator A. As well as during the proof of the
theorem 2, we have to find the initial element from the
following equation:
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lim 1[3

t—=17a,%

t(1-k+u(m+2)) 7 Y.

m+2)/2

(15)

Where OBF Y,,,, (1) is determined by the Eq. 7. Let’s demonstrate the left side of the Eq. 15 in the following form after

elementary transformations:

&)
lim lﬁ t

t—=17ag,v

(1-k+p(m+2)} /v

2u+l

u, :m‘[sm’”’l(l

Ttiee

VT @R ()

Ttiee

o 2T ()
e, 2Tu
iy

2 2)/ 2 +2ul +1 ot
u,dids=| &= s(m+2) :G(m_ KD (1)) jx‘ "1, (ER)
m+2 IMF(B) Gtz
[m+2)/2 2 1 Gtiss 1 B
R (A} Juydids = g G(mf WO+ 1)) [ A R(A Jugx fsmree (157
IH+2 IMF(B) Ttiee 0
o, (hsm /2 1/ (m o+ 2)') | ot (16)
yi— —Ldsdh=— [ AR(A)u,
=S UAVRRES) B
(m+2)(u+2j)+
(W+1)r| v+1 .
= 1-k)/(20(A/ (m+ 2] Lo
> @o== [ x(@2)AR (A )u,dh
=0, . (m+ 2) 14 THew
JIIC{u+1+§00) B+v+1+ _ 20
(u+2j)+1-k)
Taking into account the representation Eq. 16, let put sup ‘R ( <d
down the Eq. 15 in the following form: 1=t
oo Let’s assume that the condition 1 is fulfilled.

il J' (17

1“ G tiee

mxz m )&)udx ul

Thus, the unique solvability of the problem Eq. 1 and
2 reduces to the existence problem of the bounded
operator, Eq. 17 set by the relation Eq. 17 and continued
by continuity on E, an mverse operator defined according
to some subset D (A).

As we noted earlier, during the proof of a sufficient
condition for the umque solvability of the problem Eq. 1
and 2 with an unbounded operator a crucial role 1s played
by the distribution and the asymptotic behavior of the
function zeros x (&3;4). Therefore, we consider a special
case first when the distribution and the asymptotic
behavior of the function zeros x (@;4) are known.

Condition 1: Let 20, 0 = m+2,v = p/2+k-1/2m+4 and each
x({mi) =T (u+1)

A, j=1, 2. zero of the function:
L3+|-L1 2\/%
Btu

m+2
belongs to the resolvent set p (A) of operator A and such
d=0 exists, that:

(18)

m+2

O

910

Smee each zere A, j = 12... defined by theEq 18
of the function x (@A) belongs top(A), then it
belongs  to P (Adtogether with the circular
neighborhood €, of the radius 1/d, the boundary of
which, passed along clockwise 1s denoted as A, Let
Ay 1s the complex plane contour, consisting of a straight
line passable passable bottom up Re z = o>, v,'-
parabola, vy, image at the following representation:

A€ p(A)Red, >0>0,

Let’s take and choose neN so that:

k+2B+2u+3
n>max( B+2u+3) (19)
A (B+u+s5/2)/2
Let us consider the bounded operator:
R d
Sl REE L e o)

v

24 g X((’?-J;Z)(Z—?LD )"

Let us show that the mtegral in Eq. 20 at the
performance of condition 1 is absolutely convergent.
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Tndeed, due to the choice of the circuit ,y,* the inequalities
(Glushak and Pokruchin, 1997; Glushak and Pokruchin,
2016):

M Rei>m

7\,1_1”2 kz <
e

and the asymptotic behavior of the modified Bessel

function:
A

1‘,(9“):%

A oolargh </ 2

(1+0(?\,’1)

the integral is absolutely convergent, since, as follows
from (19), 2n> (k+1)/2+p+p+1 Let’s consider the integral

according to U ¥, . We obtain the following:

=12,

1 J- R(z)dz _ X R(XJ) _
2 w31 x(m;z)(z—lu)n = x’(m;;\‘J )(;\'J — )1‘
(m+ 2)1—ﬁ—p " ;\.](WH)QBMR(}\,])

7{ut) ]z::’kj"‘lwﬂ (24, /(m+2))(,

D )n

and the absolute convergence of the obtained series
follows from the condition 1, the asymptotic behavior of
the modified Bessel function and the asymptotic behavior
in Eq. 14 of the modified Bessel function zeros, since as
follows from Eq. 19, 2n>p+p+5/2

Theorem 5: Suppose that the condition 1 and A € G,
performed. If u DA+, where neN is chosen so that the
inequality Eq. 19 is performed, then the problem Eq. 1 and
2 has a unique selution. Proof. As we noted already, the
only existing solution to the problem Eg. 1 and 2 1s
reduced to the existence of an inverse element operator
among the limited operator B, defined by the equation Eq.
17 and 18. Let us show that the mverse operator B has an
. Let's. V € D (A), 0,<0<Ref Then,
substituting the operator B in (20) defined by the equality
in Eq. 17 and applying the Hilbert identity:

Inverse operator

we obtain the following equality:

911

R(z) 1
HBv - X{mz)(z=dq)"in
MR (e Jer (27 vazdz -
ax(m-,aZ)R(z)v ey
Gtes ;\' )n(iz 72)

”"*‘m (wé) (2),

2)(z o) (& 2)

(o,

The integral converges absolutely m Eq. 21.
Changing the order of mtegration, we will have the
following:

o= ix w, a (Z) vdEdz
':[a'[m% @, z U)n(az_z)
1 poti= s ,
Lo MRACRS IR (: )VIE (22)
dz @

(@ 7) (72 ) (£~ 7]

If the integration contour y? is closed to the left
without crossing |J v, , then the mner integral in the
second term of in Eq. 22 will turn into zero because of the
circuit choice and Cauchy’s theorem for multiply
connected domain. And, Let’s use Cauchy’s integral
formula to calculate the mtegrals m the first term of Eq. 22.
Thus, the following equality is fair:

—
(=
[l

éx m@ (z)vdidz
le wz)(z A ) (£ 2
e Ui"fii‘;—;g
R(z)vdz:LJ-R(z)vdz:
(z-2) Zaglz=h),
-1

R e =R Gy

The commuting operators H, B, R"(A,) are limited and
the domainis D (A) 1s dense m E, thus, the equality Hbv
= (-1 (Ag)" 1s also fair for v € E. At that HB: E-D (A",
Thus, the operator B~ v = (-1)" (Al-A) Hv at v € is the
inverse cne with regard to B, B™D (A®-E). Indeed,
BB 'v = (-1 B (AJ-A)y Hv = (-1 BH (A4, -A)' v = R" (4,)
(A-AY v = v, ve D (A", BBy = (-1 (A -AF R”
(A v = veE.
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Returning to the problem in Eq. 1 and 2, let’s define
the initial element u, (A I-A)* H , belonging to D (A),
where u, €D (A™"), The cperater H is set by the equality
in Eq. 20, 4, € p (A), ReA;>0,>w.Then the only correct

solution u (t) of the problem in Eq. 1 and 2 has the

following form:
(m+2)i2

_(—kpum ey _
u(ty=t Y, (Du,.T=
2p+l i 2

where OBF Y2, (Dis defined by the Eq. 7. The
theorem is proved. In contrast to the theorem 5, the
location, multiplicity, and the asymptotic behavior of the
characteristic function A (W;A) zeros are unknown in
general case, which leads to additional difficulties to
prove the sufficient conditions for the unique solvability
of the problem in Eq 1 and 2 with an unbounded operator
Al

Condition 2: Let p=0 and each path A, j = 1.2,... the
function x (&3;4) belongs to the resolvent set p (A) of the
operator A and such d>0 ., that:

sup|R. ) <4

=12,

Besides, let neN, 4, € p (A), Re A;>0,are chosen so
that the integral is completely converged in the form of in
Eq. 20. Similarly, the following statement i1s proved in
theorem 5.

Theorem 6: Suppose that condition 2 and A € G, are
performed. Ifu, €D (A™"), then the problem in Eq. 1 and 2
has the only solution. The condition 2 was formulated in
a very general way. The additional mformation about the
zeros of the characteristic function, x (@A) will allow to
specify 1t as well as during the formulation of the
condition 1.

MATERIALS AND METHODS

Malmsten equation makes possible (Glushak and
Pokruchin, 2011) one more correct statement of the
weight Cauchy problem, but with two initial conditions, in
contrast to the first weight problem Eq. 1 and 2 At 0 <p<
1/2 we will seek the solution of the Eq. 1 satisfying the
following conditions:

Hm ™ () = u,, (23)
t—0
limt—mJZ (t(k—l+u.(m+2))t'2u(t))f =0 (24)

t—0

912

OBF v, (t) is also used (Glushalk and pokruchin, 2011) for
the development of the problem in Eq. 1 and 23 solution.

Theorem 7: LetO<p1<1/2,u, €D (A) and the operator Ae G,
2u- Then the function:

fm 4212

u(t) — t(l—k—u.(m+2))12Y_ (T)u T=
s ’ m+2

Ts the only solution of the problem inEq 1, 23 and 24.
In particular, at | = m = 0, O<k=1 the problem Eq 1, 23 and
24 turns into the problem in Eq. 3-5 for Euler-Poisson-
Darboux equation. At that the initial condition in Eq. 5 1s
not removed.

And m the present case of the study concerning the
solvability of a nonlocal problem in Eq. 1, 2 and 24 they
are also dedicated to the obtaining of the primary element
in condition in Eq. 23 according to non-local condition
Eq. 2 The meanming of the statements cited below is to
define by the means of non-local conditon Eq. 2
characteristic features which will be denoted by us as
follows

PHIEDY

1=0

D - WV + 1+ ((m+ 2)(2j — W
JICd—u+ PCE+ v+ 1+ ((m+ 2)
+1-K3/ (26000 f (m + 20
(Zi—w+l-k)/ 2o

to obtain the sufficient conditions for the solvability of
the nonlocal problem in Eq.l, 2 and24. Similarly, the
following theorems are proved according to Theorems 2-6.

Theorem 8: Let, 5:>0,0<u<1/2, 00,20 (v+1 }-p (m+24-1-k0,
A 18 the limited operator and u, € E. Suppose, that the
problems in Eq. 1, 2and 24 have a unique solution. It is
necessary and sufficient that the following term 1s
performed x (@5;4) = 0, A € 0 (A) in the range o (A) of the
operator A.

Theorem 9: Let,0<?0<1/2, 0 = m+2,v = w/2+(k-1)/(2m+4),
A,-the limited operator, 1y, € E In order to make the
nonlocal problems Eq. 1, 2 and 24 have a unique solution
at the specified values of the parameters it is necessary
and sufficient that the following condition is performed on
the spectrum o (A)of the operator A:

Iﬁ—u[

If the conditions of Theorem 9 are performed and,
besides, 0<Jk<I, L=m =10, then the nonlocal task Eq. 1, 2and
24 for Malmsten equation 1s tumed into the non-local

23

m+2

}# 0.heG(A)
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problem Euler-for Poisson-Darboux equation and the
corresponding characteristic function in this case has the
following form :

ki1 (k-1)/2+B
@A) = F( ;r J{ﬁj I(k—l)!2+[3("/)_“)

Theorem 10: Suppose 0 < p < 1/2, 13 a closed linear
operator in E Let the nonlocal problem Eq. 1, 2 and 24 can
be solved by u (t). In order to make the solution the only
one it is necessary that neither zero, A, j = 1,2,...of the
whole x (@;4) function 1is the eigenvalue of the operator

A

Condition 3: Let 0<p<1/2, 0 = m+2, v=-p/24+(k-1)/(2m+4)
and each zero 4j,7=1, 2, ... of the function:

T“ﬂ-{

belongs to the resolvent set p(A) of the operator and
there 1s such d= 0,that:

2%

m+2

m+ 2

Xy = F(l _“)(JI

SUp|RG: )| <d

=L2,...

Let’s take Aep(A), Re Ay >0 > oy and let’s ne N choose so
that:

n>max{(k+28-2u+3)/4, (B-u+5/2)/2) (25

Theorem 11: Suppose that the condition 3 and AeG,,
are fulfilled: If u,e D (A™") where neN is chosen in such
a way, that the Eq. 25 is performed, then the problem Eq.
1, 2 and 24 has a unique solution.

Condition 4: Let O<p<1/2, and each zero Aj,j =1, 2 of the
function #@A) belongs to the resolvent set p(A) of the
operatorand such d> 0 exists that:

sup|re: ) <d

i=1,

Let’s neN, 4; €p(A) , Re A>0, are chosen so, that the
integral is converged completely:

vdz

Hmz)(z-n,)"

Theorem 12: Let the condition 4 and AeG, ,, are fulfilled.
If u,€D(A,.;), then the problem Eq. 1, 2 and 24 has the
unique solution.

[1‘—,

913

RESULTS AND DISCUSSION

Let’s consider then the problem of finding Malmsten
Eq. 1 solutions satisfying the local condition:

LimIfu) =u,, (26)
t—1
where If, p>0 the left-sided fractional

Riemann-Liouville integral, defined by the equation:
(Samko et al., 1993)

t p-1

FLB)J-(J[ -8} u(s)ds.

0

Puit) =

Let us determine further the mtial element u, m term
Eq. 9 according to non-local condition 1 Eq. 26. To this
end let introduce the following function for consideration:

D DD+ 2Xut 2j) +
wicbm B = 2 T+ T+ OB+ (m+2)

3-k)/2) Ou/ (m+ 248
(W+2)+3-k)/2)

which is called the characteristic function of the non-
local condition in Eq. 26 and which will be denoted as
Y(ts; A), where @ = (k, 1, m, B).

Theorem 13: Let p>0, u>0, A-the limited operator and
u,€E. In order to make the problems i Eq. 1 and 26 have
a unique solution it is necessary and enough that the
condition Ji(t3; A) # 0, Aeo (A) is fulfilled within the range
0 (A) of the operator A.

Proof. In order to find the initial element u, included
1n the Eq. 9 determined by the Eq. 8 and 6 of the function
u(t) let’s use Riemann-Liouville operator If. We will
obtain the following after elementary transformations:

|

2t(m+2)f2

Iﬁu(t) = Iﬁt(lfkﬂ-t(mﬂ))ﬂyzwl(T)uu = (r = —

M+1 - (Au /{m+2) )
= tT{u+1+j)

S[(m+2)(u+2j)+1—k)12 (t

73)571 ds.

S e

Calculating the last integral, by the virtue of
condition in Eq. 26, we obtain the following equation:
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D DD+ D+ 2 3-8 /2)
= U 1+ PEE+ (m+ 2w+ 2j)
(Aun f{m+ 2)2)2J

B3-10/2)

2

g/

(27)

Let £ is an open set of the complex plane containing
the range 0(A) of the bounded operator A, the boundary
of which 5Q consists of a finite number of rectifiable
Jordan curves, oriented in the positive direction. Then,
putting down the representation through the resolvent for
the operator on the left side in eq. 27, we rewrite the Eq. 27
n the following form:

Bu, = J.w(m;l)R(?u)uU dh=u,.
da

The proof similar to the Theorem 2 proof 1s
completed. If the theorem 13 conditions are fulfilled and
k=1, 1=m = 0, then the nonlocal problem in Eq. 1 and 26
for Malmsten equation turns into a non-local problem for
Euler-Poisson-Darboux equation and the corresponding
characteristic function in this case has the following form
The following statement is proved similarly to theorem 4.

Theorem 14: Let A 1s a closed linear operator m .
Suppose that the non-local problem in Eq. 1 and 26 has
the solution . In order to make this solution a unique one
it is necessary that no zero Aj, j = 1, 2,... of the whole
function Yr(@; A) is not an eigenvalue of the operator A.

Condition 5: Let p>0 and each zero 4j, =1, 2, ... of the
function J(%3; 4) belongs to the resolvent set p(A) of the
operator A and there is such d=0, that:

suplr, | <a

=12,

Besides, let neN, Aep(A), Re A,>0, are chosen so,
that the following integral was converged completely:

R(z)vdz
T

The following statement is proved like theorem 5.
Theorem 15: Let the condition 5 and AeG,,, are

performed. If u,eD (A™"), then the problem m Eq. 1 and 26
has a unique solution.

CONCLUSION

This problem 1s solved by the function obtaining
which satisfies Malmsten Eq. 1, the non-local condition in
Eq. 26 and the weight original condition in Eq. 24. Tt is
assumed, that O<p<1/2 and AeG, ,,.

The statements similar with the theorems 13-15 are
fair for the problems (1), (24), (26). At that instead of the
function Yr(ts; A) one should use the following function:

L aT(-w(m+ 202 -
o) = N IR+

2

+3-1)/2) (/ (m+2))
(m+2)2)-w+3-k)/2)
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