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Abstract: This study deals with the boundary layer flow and heat transfer near the stagnation point on a
permeable stretching/shrinking surface in a nanofluid. The nanoparticles considered in this study are copper
and silver. The governing nonlinear partial differential equations are transformed into a system of nonlinear
ordinary differential equations using an appropriate similarity transformation which then solved numerically
to study the effect of solid volume fraction or nanoparticle volume fraction parameter ¢ of the nanofluid.
Multiple solutions are found for a certain range of shrinking and suction parameters, therefore, a stability
analysis is performed to determine which solution is stable and physically realizable. The effects of the
governing parameters on the skin friction coefficient, the local Nusselt mumber and the wvelocity and
temperature profiles were presented and discussed. Tt was found that the nanoparticle volume fraction
substantially affects the fluid flow and heat transfer characteristics.

Key words: Boundary layer, nanofluid, heat transfer, stretching/shrinking surface, dual solutions, stability

analysis

INTRODUCTION

Nanofluids 1s a term proposed by Choi (1995) which
defined as liquds that contain suspensions of
nanoparticles with the size of 1-100 nm in a base fluid.
Nanofluids are expected to have superior heat transfer
characteristic due to the presence of the nanoparticles
that increase the thermal conductivity. There are several
studies on the forced and free convection using
nanofluids related with differentially heated enclosures
(Khanafer et ai., 2003; Tiwari and Das, 2007, Abu-Nada
and Oztop, 2009; Muthtamilselvan et af., 2010). An
excellent compilation of the published papers on
nanofluid can be found mn the book written by Das et al.
(2008) and the papers by Daungthongsuk and
Wongwises (2007), Wang and Mujumdar (2008) Kakac
and Pramuanjaroenkij (2009), Fan and Wang (2011) and
Vajjha and Das (2012).

In additional, a few research papers worth mentioning
here are the Cheng-Minkowycz problem for natural
convective boundary layer flow in a porous medium

saturated by a nanofluid by Nield and Kuznetsov (2009)
viscous flow due to a permeable stretching/shrinking
sheet in a nanoflud by Arifin et af. (2011) and the mixed
convection flow from a horizontal circular cylinder m a
nanofluid by Tham et al. (2012). We also mention, here,
two of the recent studies done by Bakar ef al. (2017) on
the rotating flow over a shrinking sheet in nanofhuid using
Buongiome model and thermophysical properties of
nanoliquids and Uddin et al. (2018) on forced convective
slip flow of a nanofluid past a radiating
stretching/shrinking sheet.

In this study, we extend the classical problem of
stagnation-point flow of a viscous and incompressible
(Newtoman) fluid on a stretching/shrinking sheet first
considered by Miklaveic and Wang (2006) and Wang
(2008) to the case of nanofluids using the model
proposed by Tiwari and Das (2007) with two different
nanoparticles, namely Copper (Cu) and silver (Ag). We
also extend the research by Arifin et al (2011) by
performing the stability analysis in order to determine the
stability of the dual solutions. It 13 worth mentiomng that
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Table 1: Thermal conductivities of various solids and liquids (Wang and
Mujurndar, 2008)

Table 2: Thermopysical properties of fluid and nanoparticles (Abu-Nada and
Oztop (2009)

Variables/Materials Thermal conductivity (W/m-K)

Metallic solids

Copper 401
Aluminum 237
Nonmetallic solids

Silicon 148
Alumina (AL,O5) 40
Metallic liquids

Sodium (644 K) 72.3
Nonmetallic liquids

Water 0.613
Ethylene glycol (EG) 0.253
Engine oil (EG) 0.145

the flow over a continuously stretching/shrinking surface
is an important problem in many engineering processes
with industrial applications such as wire drawing, hot
rolling and glass-fibre production. Later, several other
papers on shrinking surfaces were published such as
those by Sajid et ol (2008), Noor and Hashim (2008),
Nazar et al (2011), Bhattacharyya et ol (2013) and
Rosali er al. (2015)(Table 1).

MATERIALS AND METHODS

Problem formulation: Consider the steady two-
dimensional boundary layer flow near the stagnation
point over a permeable stretching/shrinking surface m a
water based nanofluild contamming two types of
nanoparticles; Copper (Cu) and silver (Ag). The nanofluid
15 assumed to be incompressible and the effects of
dissipation and radiation are neglected. The base fluid
(water) and the nanoparticles are assumed to be in thermal
equilibrium and no slip occurs between them. Table 2
displays the thermophysical properties of fluid and
nanoparticles. Under these assumptions and followimng the
model equations of nanofluid proposed by Tiwart and Das
(2007), the governing boundary layer equations for the
problem under consideration can be written as the
following:

—F—+—=0 (1)
ax dy 0z
Ju du  du du d*u 5
U—tv_ —tw_—=u —+tv, — (2)
ox 0z dx 0z
2
AN ) nfa—f (3)
ax  ay dz oz

Subject to the boundary conditions:

u=u,(x)=ax, v=0, w=w_, T=T, at z=0

n=u,(x)=cx, T=T, as z—

wo

" (4)

Physical properties Fluid phase (water) Cu Ag
C, (kg K) 4179 383 233
p (kg/m?) 997.1 8933 10500
k (ke/m®) 0.613 400 429

where, x and y are the Cartesian coordinates with x and y
1n the plane of the stretching/shrinking sheet (z = 0) while
being measwed normal to the
stretching/shrinking sheet, uw, v and w are the velocity

the z-coordinate

components along the x, y and z, respectively, w,, 1s the
mass flux velocity with w,<0 for suction and w_>0 for
injection, T is the non-dimensional temperature of the
nanofluid, T, is the constant surface temperature
distribution, T.. 1s the uniform temperature of the ambient
nanofluid, u,(x) 1s the velocity of the stretching/shrinking
sheet, u,(x) is the velocity of the external flow (potential
flow) of the nanofluid with ¢ being a constant where, ¢>0
for a stretching sheet and ¢<0 for a shrinking sheet and «
15 a positive constant. Further, p, 15 the effective
viscosity of the nanofluid and ¢, is the thermal diffusivity
of the nanofluid which are given in Table 2 and are
defined as:

M'f = knf knf

f

_ o = ke _ k+2k 200k k)
Hat (1007 " (C,) k k 2k 4ok, k) (5)

(PC D = (-0NPC e 70, ), Py = (1-0)0; HOD,

where, ¢ 1s the nanoparticle volume fraction, p, is the
effective density of the nanofluid, (pC,), is the heat
capacity of the nanofluid, k; i1s the effective thermal
conductivity of the nanofluid, p; is the reference density
of the flud fraction, p, 1s the reference velocity of the
solid fraction, p;1s the viscosity of the fluid fraction, k; 1s
the thermal conductivity of the fluid, k, is the thermal
conductivity of the solid, (pC,); is the heat capacity of the
fluid and (pC,), is the heat capacity of the solid. Following
Miklaveic and Wang (2006) and Arifin et al. (2011), the
similarity solutions of Eq. 1-3 are expressed n terms of the
following variables:

u = exf’(m), v = o(m-Dyf (m), w = ~ev mf(n),

] )
e(-n>=TT_TT°° ,n=\/§z

W e

where, primes denote differentiation with respect to 1.
Here, we have m = 1 when the sheet shrinks in the
x-direction only and m = 2 when the sheet shrinks
axisymmetrically. Equation 1 i1s automatically satisfied
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while substituting 6 into Eq. 2 and 3 reduce the
basic equations to the following ordinary differential
equations:

K f7+mff"+1-£7% = 0 (7

K, &+ Prmfd =0 (8)

while the boundary conditions Eq. 4 become:

[0y =s,(0) =2, 6(0)=1 ©
i) =1 8N —=0amn—o

Here, Pr = v/, is the Prandtl number, s = -w /{cv)"*
18 the suction (s>0) parameter, A = w/c is the stretching
(A=>0) or shrinking (A<0) parameter and ¥, and x; are two
constants relating to the properties of the nanofluid
which are defined as:

1 « K /K:
A7 (0rdp,/00" 19+ 9pC, )./ C, ) )
(10)

K =

The physical quantities of interest are the skin
friction coefficient C; and the local Nusselt number Nu
which are given by:

170y, ReM Nu, = -Sutgry (1)

Rel!ZC
R Tk,

b4

where, Re, = u(x)x/ is the local Reynolds number.

Stability analysis: In the earlier study, we have mentioned
the existence of dual solutions. In order to determine
which of these solutions are physically realizable in the
real world applications, we have to perform a stability
analysis. This analysis has been performed by many
researchers such as Weidman et al. (2006), Harris ef al.
(2009), Weidman and Sprague (2011) and most recently by
Akbar et al. (2017) and Najib et al. (201 8). First, we have
to consider the unsteady problem. Equation 1 holds while
Eq. 2 and 3 become:

du O o dn L P (g

g ox 9y Oz  Cdx az*

2
Jor, or or or anfg_f 13)
7z

ot ok oy oz

where, t denotes the time. Based on Eg. 6 and following
Weidman ef @l (2006), we now mntroduce the following
new dimensionless variable:

u= cx%f(n, T)v= c(m—l)y%f(n, 1), w=~(ev;)*mf(m 7)

12

O(n, ©) = (T-T)/(T,-T.)l.n=(c/v,) zt=ct
(14)

where T 1s a dimensionless time variable. Substituting
Eq. 14 into 12 and 13 yield the following:

3 2 2 2
K1£+mf£+l ai - a f =10 (15)
o’ om? on | onot
190, p BB (16)
2pr a'r] o ot

which is subject to the boundary conditions:

{0, r)=s,if(0, T=A60,17)=1
on (17
aif(n, T—=L0M.T)—=0amn o=
gl

To determine the stability of the solution f = fi(n) and
0 = g,(1) satisfying the boundary value problem Eq. 7-9,
we write:

f(n, © = f,(n)+e"Fn, 1), 8n,7) = g, (M)+e "GN, T)

(18)
where, v 18 an unknown eigenvalue and F(m, 1) and
G(n, 1) are small relative to f,(m)) and gy(m). Solutions of
the eigenvalue problem Eq. 15-17 give an mfinite set of
eigenvalues y,<y,<, ..., if the smallest eigenvalue v, 1s
positive, there is an initial decay which indicates that the
flow 1s stable, however, if ¥, is negative there 1s an mitial
growth of disturbances which indicates that the flow is
unstable (Weidman and Sprague (2011). Substituting
Eq. 18 into 15 and 16, we obtain the following linearized

problem:
3
Kla—ljer f, o F+f F ( f'y)aF OF _y (19)
an Yo’ am ot
2
K, 19 ? +m| f, a—G+an' +yG-a—G -0 (20
Pr o n o

6949



J. Eng. Applied Sci., 14 (19): 6947-6953, 2019

Subject to the following boundary conditions:

F(0, T) =0, iF(o, T =10,G(0,7)=0
m (21)

%F(W,T)AO,G(T], T —0asmn—e

By setting T = 0, we obtam the solutions f{(1)) = f(1))
and 6(n) = g(n). Hence, F = Fy(1) and G =G} in Eq. 19
and 20 identify imtial growth or decay of the solution Eq.
18. To test our numerical procedure, we have to solve the
following linear eigenvalue problem:

KIFD’”er(fDFD” +1,F, )-(an’_y)Fn’ =0 (22)

«,G7+Prm(f, G, +Eg) ) +1G, = 0 (23)
Along with the boundary conditions:

F(0)=0.F(0)=0,G,(0)=0 (24)
E(m)—0,G,(n)—0asmn —>ee

Tt should be stated that for particular cases of 4, s, m
and Pr, the stability of the corresponding steady laminar
flow solutions fi(m) and g.n) are determined by the
smallest eigenvalue y. Harris ef al. (2009) suggested that
the range of possible eigenvalues can be determined by
relaxing a boundary condition on Fy(n) or Gy(n).
Therefore, for the present problem, we relax the condition
that F* (1)~ 0 as 1~ and for a fixed value of vy we solve
the system Eq. 22-23 along with the new boundary
condition F”,(0)=1.

RESULTS AND DISCUSSION

Numerical solutions to the nonlinear ordinary
differential Eq. 7 and 8 along with the boundary
conditions Eq. 9 were obtaned usmg the “bvpde”
function in MATL AB Kierzenka and Shampine (2001) for
different values of the nanoparticle volume fraction ¢.
Following Khanafer et af. (2003); Tiwari and Das (2007);
Abu-Nada and Oztop (2009), we have considered the
range of nanoparticle volume fraction as 0<$h<0.2. The
Prandtl number Pr of the base fluid (water) is kept
6.7850 throughout the study. The
thermophysical properties of fluid and nanoparticles used
in this study are given in Table 2. To verify the accuracy

constant at

Table 3: Values of £ (0) for ¢ = 0 for Cu nanoparticles with different m and

s=0
Wang (2008) Present
A m=1 m=2 m=1 m=2
1 0.0000 0.0000 0.0000 0.0000
0 1.232588 1.311938 1.232588 1.311938
-1 1.32882 0.0000 1.32882 0.30360

Table 4: Values of A, for Cu nanoparticles for several values of m and s

whentd =0
m 5 Ae
1 0 -1.24658
0.5 -1.58011
2 0.5 -1.52676
0.8 -2.00022

Table 5: Smallest eigenvalues A for Cu nanoparticles when & = 0.1 and
different values of A and s

A 5 A (Upper branch) A (Lower branch)
-1.2 0 0.5780 -0.5172
-1.4 03 0.4862 -0.4502
-1.5 04 0.1496 -0.1463
0.5 0.8097 -0.7210
0.6 1.1791 -1.0000
4_
3_
S
2 ‘.‘.\
4, =-1.52676
14 m=25=05=0.1
— First solution
=155t T Second solution
0 T T 1
-2 -1 0 1

Fig. 1: Variation of {''(0) with A for different types of
nanoparticles

of the present method, the present numerical results for
£7(0) are compared by Wang (2008) for various values of
the stretching/shrinking parameter A when ¢ = O (regular
Newtomen flud). The comparisens which presented
in Table 3 are found to be in very good agreement
and thus, we are confident the present results are
accurate.

Variation of the reduced skin friction coefficient £7(0)
and reduced local Nusselt number -0°(0) with A for
different types of nanoparticles when m = 2, s = 0.5
and ¢ = 0.1 are shown in Fig. 1 and 2, respectively. It
seems that there are regions of unique solutions for A>-1,
dual solutions for A <A<-1 and no solution for A<A, where,
A 1s the critical value of A beyond which the boundary
layer separates from the surface and the solutions based
upon the boundary-layer approximations are not possible.
It i1s umportant to mention that in this study, the second
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m=2,5s=05 =0.1
6+ — First solution
------ Second solution

-0'(0)
w

Fig. 2: Variation of -0°(0) with A for different types of
nanoparticles

1.0 7

0.5 7

— First solution
o Second solution

m=1m=2

(=]
—_
19 -
w
N
w

n

Fig. 3: Velocity profiles (1) for different types of

nanoparticles whenm =1 and 2, s =05, A =-1.5
andp =01

solutions only occur for the shrinking (A<0) case. Several
values of 4. for Cu nanoparticles for differentm and s
when, ¢ = 0.1 are displayed in Table 4 and 5. From Fig. 1,
it can be seen that the values of the reduced skin friction
coefficient £7(0) for nanoparticle Ag are lugher than Cu
while opposite behavior can be observed in Fig. 2,
specifically when A>-1. From Table 4, we found that the
values of | increase with the increase of s. Hence, the
suction parameter widen the range of A for which the
solutions exist.

Figure 3 and 4 display the wvelocity f'(mn) and
temperature profiles 6(rn) for both Cu and Ag
nanoparticles for m = 1 (when the sheet shrinks m
the x-direction only) and m = 2 (when the sheet shrinks
axisymmetrically) whens = 0.5, A=-1.05and ¢ = 0.1. The
first (upper branch) solution and second (lower branch)
solution are illustrated with solid and dashed lines,
respectively. It 1s seen that the boundary layer thickness

— First solution
------ Second solution

N\
W m=1m=2

6(M)

Fig. 4: Temperature profiles 0(n) for different tyvpes of
nanoparticles whenm =1 and 2, s =0.5, A=-1.5
and ¢ = 0.1

of Cu nanoparticles 13 larger compared to Ag
nanoparticles. Further, it can be observed in Fig. 4 that the
heat transfer rate at the surface for Ag nanoparticles is
higher than Cu. The boundary layer thickness for the
second (lower branch) solution is seen to be larger than
the first (upper branch) solution in both figures. Both
velocity and temperature profiles displayed in Fig. 3
and 4 satisfy the far field boundary conditions
asymptotically and thus, support the validity of the dual
solutions obtained in this study.

Finally, a stability analysis was performed by solving
an unknown eigenvalue v on Eq. 22-23 along with the
boundary conditions Eq. 24. The smallest eigenvalues
v for some values of v and s are shown in Table 5.
From the table, it can be seen that the upper branch
solutions have positive eigenvalues y while the lower
branch have negative eigenvalues vy, thus, we
conclude that the first (upper branch) solution 1s stable
while the second (lower branch) solution is unstable.

CONCLUSION

The problem of boundary layer flow and heat transfer
near the stagnation poit past a permeable
stretching/shrinking  sheet in  a  nanofluid is
investigated. The nonlinear ordinary differential equations
are solved numerically for 2 types of nanoparticles which
are copper (Cu) and silver (Ag) in the base fluid of water
with Prandtl number kept constant to Pr = 6.8750.
Results of the skin friction coefficients, local Nusselt
numbers as well as the velocity and temperature
profiles are presented and discussed for different values
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of the governing parameters. Dual solutions are found
for a certain range of shrinking and suction parameters
and therefore, a stability analysis has been performed to
determine which solution is stable and physically
realizable. Tt can be concluded that the first (upper branch)
solution 1is stable while the second (lower branch)
solution 1s unstable.
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