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Abstract: In Sixties the concept of 2-normed spaces was imitially developed by Gahler while that of n-normed
space one can see in Misiak. Since, then many others have studied this concepts and obtained various results.
Mutagin and Gunawan studied the relation between two known n-norms on I°, the space of p-summable
sequences. The purpose of this study 1s to study the relation between the two n-norms on L., the space of all
continuous functions. The first n-norm 1s taken from Gunawan definition while the second n-norm is derived

from Gahler’s formula. In particular, we examine the convergence n terms of these n-norms and prove that the
convergence in terms of each of these n-norms is equivalent to that in the usual norm on T, .
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INTRODUCTION

Let, n be a non-negative integer and X be a real
vector space of dimemsion at least n. A real-valued

function |, ..., | on X* satisfying the following four
properties:

o xy, . x| = 00xy, .., X, are linearly dependent

*  |x,, ..., X,/ 18 invariant under permutation

o lexy, %y e Xl = ] X Xas s Xyl for any aeR

o IXAXE Xg, s X €K g e X HIXE X X

where, an n-norm on X and the pair (X, ||, ..., |} 1s called an
n-normed space. A sequence f, n an n-normed space
L s || 18 said to converge to some feX in the n-norm

whenever, lim,__ |[£+£ £, ... £] =0, forevery £, .., X
On the space L., the following an n-norm was defined by
Gunawan (2001):

lei- - 2.

de‘[(gl (XJ))‘

=8up.sup, ..., sup
= 22 Zn

The theory of n-normed spaces was developed by
Gahler (1969a-c¢). While various aspects of n-normed
spaces have been studied extensively (JTain and Chugh,
1995; Kim and Cho, 1996, Malceski, 1997, Mutagin and
Gunawar, 2010, Siddiqi ef al., 1989, Suyalatu, 1990).

If X 18 equipped with a norm ||. ||, then according to,
Gahler, one may define an n-norm on X (assuming that X
is at least n-dimensional) by the formula:

*
= sup
e gt

e () e £ (x,)

[

where, X denotes the dual of X which consists of
bounded linear functionals on X. For X = L, we know that
X =L,. In this case the above formula reduces to:

*

Py Pl sup  .sup.sup
hl,iqu,||h;]Hs1 g Em
PiXa) o x| i(xa) o By(x,)
pn(xrl) pn(Xm) hn(Xrl) hn(xm)
where, p,, ..., p.€L.. and ||. ||; denotes the usual norm on L,.

Thus, on L., we have two definitions of n-norms, one
referable to Gunawan (2001 ) and the other is derived from
Gahler (1969a-c). Beginning, we prove the results for
n = 2 and then extend it to any n=2.

MATERIALS AND METHODS

Recall that Gunawan’s defimition of 2-norm on
L. 18 given by:

P.9

_ =sup.sup+abs
X, o, gl X
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By the same consist as Gunawan (2001), we can get:

Hp, qu = sup  .sup.sup P

heelyfefeh <t =

hix) hix)

e(x) e(x,)

From the
facts.

last formula, we prove the following

Fact 2.1: The inequality ||p, q|l..<2|[pll.||qll.. holds for every
p. 9L

Proof: By tnangle inequality for real number and
Minkowski’s inequality, we have:

<

p.q||, =supsup|p(x, ) a(x,) - p(x, )q(x,)

|E

q(xk)| + SEP-SBP|P(Xk)||Q(Xr)

sup-sup [p(x ) + ()

}_

[sup.supp(xr)
2lp]L. Jlall.
This proves that [|p, qll..<2||p{l..[lql|-

Fact 2.2: The mequality ||p, g/’ <2||p, g/l holds for every
P, qcL..

Proof: By Holder’s inequality ,we have:

G RC I IENIICY S
S k) alx)lelx) elx)”
N P ORI | N GO R 1EY
> xf{b q(x,) q(xk)} o xf{b e(x,) e(xk)}

Now:

Hy 2k

sup.sup {abs (
e

sgp.sgp“h(xr).e(xkﬂ + ‘h(xk).e(xr)

sup.sup|h(xr).e(xk )‘ + sup.sup|h(xk).e(xr)

2/, e,

But for [|h|,, [le], <1, we get ||h, |/, <2 and:

P(Xr) P(Xk)

q(%.) a(x)
P.q

h(x) h(x)

fe(x) el(x)

sup  .sup.su <

hesbld ot %

h,eli2

P-4

This proves that |Ip, ¢’ <2|p, ql|..

Corollary 2.3: If p, converges m ||., .||, then it also,
converges topin ||., .|l

Theorem 2.4: If p, converges i ||., |, then it also,
converges top i ||. J|...

Proof: Let, p,, a sequence in L._ which converges to peL.,
m ., J... Then, for any >0, there exists an deN such that
for mzd, we have:

sup.sup

Hr Ey

Pu (%) "P(X) Pal) P(%)]
) )

q(x,

for every qcl.. and e, hel,with ||e]|,, |hll,<1. In particular, if
wetake g = {1, 0,0, ...}, h = h(x) with h(x,) = sgn(p,(x,)-
PE PP Ipapl-and e = {1, 0,0, ..}, then we have:

o [Pu(x) - p{x,)
e RS
2o o -,
such that ||p,-p|.#0. If, we take g = {0,1, 0,0, ...}, h=¢{h

(x0), 0,0, ...} with h(x;) = sgn(p.(x, -p(x )Ip(x)-pCa V| IPa
pll.ande = {0,1,0,0, ...}, then we have [p,(x, -p(x, )}/ [Pu-
pll. <€. Adding up, we have:

Ip.. —pl. =" P () —plx,)]

- <2e

[p.. ol
Theorem 2.5: If p, converges i ||., .|l then it also,
conwverges (to the same limit) ||, .|..
Proof: Since, the convergence in||., .|| implies that in ||. ..
by Theorem 2.4 and the convergence in ||. |, implies that in
II.. .|l.. by Fact 2.1, then the convergence in ||., .| implies
that in ||., .||...
Corollary 2.6: A sequence is convergent in |., .||.", if and
only, if 1t 1s convergent (to the same limit) m||., .||

RESULTS AND DISCUSSION

Note 2.7: All these results can be extended to n-normed
spaces for any n>2. As an extension of Fact 2.2, we have:
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Fact 2.8: The inequality |[p,, .... pl. <! [Py ..., Pl holds
for every py, ..., p.€L...

Corollary 2.9: If p, converges 1 ||, ..., ||., then it also,
converges to pin ||, ..., ... Analogous to Theorem 2.4, we
have:

le(xq *_P1(Xr1))
pa(x.)

SUp.SUP,....SUP

# iy Iy,

for every p,, ..., p.€L. and h,, .., heLl, with ||k, ...,
|hy,<1. Now, takep,=h,={0,..,0,1,0, ...} for every
k=2, .., nwhere1 is (n+1-kth) term and h, = {h,(x)), h,(x,).
YL, With By(,): = S0Py HP PGP Pra
Pl then, we have:

= ()2
2 e
T o, nL
Next, if we take p,=h, {0,..,0,1,0, ..} for every
k=2, .,n where, 1 is kth term and h;: = {hi(x)), 0, 0,

<at with by(x) = sgn(p(x)-p XOD)IP &P E AP 1P -
then we have:

‘plm (X1 ) B (X1)|

<<
Hpm P ”m

Similarly, if we alter the position of the entry 1 in p,
and hy for k = 2, ..., n and change the nonzero entry of hy
accordingly, then we can get:

‘plm(xz ) P (Xz )|

<E
lem _Ple

And so on, until:

‘plm(xn—l) —P (Xn—l )|
I —piL

<E

Adding up, we get:

- |p1m(Xr1)7p1(Xr1)
o - B Pl AU one
L D I

Corollary 2.11: A sequence is convergent in ||, ..., ||, if
and only, if it is convergent in ||, ..., ||...

P (X, *_Pl(xrn)) hi(x, )

Theorem 2.10: If p,, converges in ||, ..., || , then it also,
converges top i ||. J|...

Proof: Let, p,, be a sequence in L., which converges
top, = P, pi(xy), .. el in||, ..., |l Then, for any €0,
there exists an delN such that for m=d, we have:

CONCLUSION

We can relate the convergence m terms of
Gunawan’s norm and the convergence m terms of
Gahler’s norm by equivalence or they are the same
convergence for sequences of continuous function.
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