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Abstract: Descriptor selection for classification methods is one of the most important topics in the
chemometrics. The selection of descriptors can be considered to be a variable selection problem that aims to
find a small subset of descriptors that has the most discriminative information for the classification target.
Penalized Support Vector Machine (PSVM) is one of the most effective embedded methods and it is more
preferable than the Support Vector Machine (SVM) because PSVM combines the standard SVM with a penalty
to simultaneously perform both variable selection and classification. The PSVM with L1-norm is the most
widely used methods. However, the efficiency of PSVM with L1-norm depends on appropriately choosing the
tuning parameter which is involved in the L1-norm penalty. In this study, a particle swarm optimization method
which is a metaheuristic continuous algorithm is proposed to determine the tuning parameter in PSVM with
L1-norm penalty. The proposed method will efficiently help to find the most significant descriptors in
constructing Quantitative Structure–Activity Relationship classification (QSAR) model with high classification
performance. Depend on the four datasets, the experimental results show the favorable performance of the
proposed method when the number of descriptors is high and the sample size is low comparing with other
competitor methods.
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INTRODUCTION

With the development of technologies in the
chemometrics, large volumes of chemical data are
generated, presenting a challenge for chemometricians to
conduct the statistical classification. One of these
challenges is the low number of observations (chemical 
compounds) and the large number of variables
(descriptors) (Al Fakih et al., 2016). High dimensionality
of the data affects the performance of any used classifier
due to the presence of irrelevant, noisy and redundant
variables. These uninformative variables may dominate
the informative variables for classification.

Variable selection which is also known as
dimensionality reduction is the method of selecting an
optimum  subset  of  relevant  variables  that  can improve
the  performance  of  statistical  classification  and  to
avoid the curse of dimensionality (Khajeh et al., 2012).
Consequently, several variable selection methods have
been proposed and studied in the literature. These
methods  can  be  divided  into  three  broad  categories:
The filter, wrapper and embedded methods (Algamal and
Lee, 2015).

Filter methods are one of the most popular variable
selection methods which are based on a specific criterion
by gaining information of the each variable. These
methods are work separately and they are not dependent

on the classification method. For the wrapper methods, on
the other hand, the variable selection process is based on
the performance of a classification algorithm to optimize
the classification performance. In embedded methods,
variable selection process is incorporated into the
classification methods which can simultaneously perform
variable selection and classification (Liang et al., 2013).
Support Vector Machine (SVM) has attracted much
substantial attention from many statisticians in recent
years because of its theoretical and practical advantages
that justify its improved performance in classification
(Shen et al., 2007). The main objective of the SVM is to
find a hyper-plane which effectively separates between
two classes of data points to identify a decision boundary
with the maximum geometric margin (Cong et al., 2013).
Despite the excellent characteristics of SVM, there are
still several drawbacks including the selection of
variables. In other words, SVM cannot perform variable
selection (Zhu et al., 2004). Penalized Support Vector
Machine (PSVM) which is one of the most effective
embedded methods is more preferable than the SVM
because PSVM combines the standard SVM with a
penalty to simultaneously perform both variable selection
and classification (Wang et al., 2008). With deferent
penalties, numerous PSVMs can be applied, among them
is L1-norm which is known as the least absolute shrinkage
and selection operator (lasso) (Broman and Speed, 2002).
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However, the efficiency of PSVM with L1-norm
depends on appropriately choosing the tuning parameter
which is involved in the L1-norm penalty. The tuning
parameter controls the tradeoff between classification and
the number of selected variables. As a result, selecting a
suitable value of the tuning parameter is an important part
of fitting. The most widely used approach for selecting
the tuning parameter is Cross-validation (CV) which is a
data-driven approach. However, it was pointed out that
CV usually identify too many irrelevant variables when
the number of variables is large and can be very time
consuming (Park et al., 2014).

In this study, a particle swarm optimization method
which is a metaheuristic continuous algorithm is proposed
to determine the tuning parameter in PSVM with L1-norm
penalty. The proposed method will efficiently help to find
the most significant variables in constructing quantitative
structure-activity relationship classification model with
high classification performance. The experimental results
show the favorable performance of the proposed method
when the number of variables is high and the sample size
is low.

MATERIALS AND METHODS

Support  vector  machine:  Support  vector  machine  is
an excellent, efficient, effective and a powerful
classification method for binary classification problems
which   is   based   on   the   statistical   learning   theory
(Dong and Jian, 2015).

Support vector machine has several important
advantages: great flexibility, high accuracy, ability of
generalization,   computational   efficiency,   high
performance  when  the  number  of  variables  is  large
and dealing with complex nonlinear problems using a
simple  linear algorithm  by  using  soft  margin  approach
(Bi et al., 2003). Training SVM is equivalent to solving
the problem of convex linear constrained quadratic
programming. SVM is based on mapping the sample
observations into a high-dimensional feature space to
search and obtain an optimal separating hyperplane which
maximizes the sum of the distances between two classes
in this space (Liu et al., 2010).

In chemometrics application, descriptor matrix can be
described as a matrix X = (xij)n×d where each column
represents a descriptor and each row represents a sample
(compound). The numerical value of xij denotes the value
of a specific descriptor J (j = 1,…, d) in a specific sample
i( = 1,…, n). For a binary classification problem, given a
training dataset  where, xi = (xi,j, xi,2,…, xi,d)

n
i i i 1{(x ,y )} 

represents  a  vector  of  the  ith  descriptor  and  ti0{-1,
+1} for i = 1,…, n where, yi = +1 indicates the ith sample
is  in  class  1  and  yi  =  -1  indicates  the  ith  sample  is
in class 2.

An  SVM  generates  a  real-valued  function   n(X)
as  a  hyperplane  to  maximize  the  distance,  w, between
the data which should be separated. There exists two
parallel boundaries n(X).w+b = K1 which can exactly
separate two classes. The separating hyperplane,
sgn(n(x).w+b), is between them. The margin between
these two boundaries is defined as 2/||w||. In order to
maximize this margin, the following problem must be
solved as:

(1)
T

w,b

i i i

1
min w w

2
S.T. y ( (x ) w b) 1, i 1,2,...,n.   

By solving this problem, the optimal hyperplane
 of Eq. 1 with a solution of  and  aresgn((w x) b)   w b

obtained.
Depending on Lagrangian, Eq. (1) can be written as

a quadratic dual optimization problem by:

(2)

n n n
T

i j i j i j i
i 1 j 1 i 1
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i i i
i 1

S

1
min  y y x x  

2
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
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

   

    

 
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Where:
α : A vector of Lagrange multipliers vector
αi : Corresponds to a training observation (xi, yi)

Equation 1 and 2 are used for linearly separable
training observations. However, to extend the SVM for
the linearly non-separable training observations, each
observation (xi, yi) is associated with a slack variable ζi>0.
The constraint in Eq. 1 becomes yi(n(xi)wi+b)+ζi>0. Thus
Eq. 1 becomes:

(3)

n
T

iw, b
i 1

i i i i

1
min w w C

2

S.T. y ( (x ) w b) 1, i 1,2, ...,n


 

     



where C is a parameter that controls the tradeoff between
the maximum margin and the minimum classification
error. Then, the Lagrangian becomes:

(4)

n n n

i j i j i j i
i 1 j 1 i 1

n

i i i
i 1

K( . )

S.

1
min  y y x x  
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y 0, 0 C ,    i  1,  2, nT. ...,


  



   

     

 



where, K(xi.xj) = n(xi)
T n(xj) is the kernel function that

allows the maximum margin to be applied efficiently in
high-dimensional feature space.
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Penalized support vector machine: Although SVM has
been proven useful in binary classification, it cannot
perform features selection because of using L2-norm,

. Typically, any classification problem includes a2
2|| w ||

number of features where many of these features can be
noisy or redundant,  leading to degrade the performance
of  the  classification  algorithm.  Therefore,  reducing
dimensions is an essential step that can be achieved
through feature selection strategies.

Bradley and Mangasarian (1998) and Zhu et al.
(2004) proved that the SVM optimization problem is
equivalent to a penalization problem which has the form:

(5) 
n

i iw,b
i 1

1
min 1 y f (x ) Pen (w)

n 


 

where, [1-yi f(xi)]+ = max(1-yi f(xi), 0) represents the
hinge loss term and Penλ (w) represents the penalty term.
Several  penalties  have  been  proposed.  Among  them,
L1-norm (Zhu et al.. 2014; Bradley and Mangasarian,
1998), Lq-norm with q<1 (Liu et al., 2010; Ikeda and
Murata,   2005;   Liu   et   al.,   2007).   Furthermore,
Zhang, et al. (2005) proposed the Smoothly Clipped
Absolute Deviation (SCAD) penalty of Fan and Li (2001)
with SVM. In addition, Wang, et al. (2008) proposed a
hybrid huberized SVM by using the elastic net penalty
while Becker, et al. (2011) proposed a combination of
ridge and SCAD with SVM.

The L1-norm penalty, proposed by Bradley and
Mangasarian (1998) and Zhu et al. (2004) is one of the
most   popular   penalty   function   because   SVM   with
L1-norm can automatically select features by shrinking the
hyper-plane coefficients to zero. The SVM-L1 is defined
as:

(6) 
n d

i i jw,b
i 1 j 1

1
min 1 y f (x ) | w |

n 
 

   

where, λ is a positive tuning parameter which controls the
amount of shrinkage. Equation 6 is a convex optimization
problem and can be solved by the method of Lagrange
multipliers.

Particle swarm optimization method: Particle Swarm
Optimization (PSO) is a nature-inspired metaheuristic
algorithm that was originally proposed by Kennedy and
Eberhart (1995) for solving continuous optimization
problems.

The PSO inspires the social or collective behavior of
animals such as bird flocking and fish schooling. PSO
compares with the other computation intelligence-based
algorithms has several advantages such as simple

implementation, computationally higher efficiency, fewer
parameters to tune, scalability and flexibility, robustness.
For instance, comparing with genetic algorithm, there is
no crossover and mutation genetic operation (Chen et al.,
2014;  Kiran,  2017;  Lin  et  al.,  2008;  Lu  et  al.,  2011;
Zhou and Dickerson, 2014).

The PSO performs the searching using a population
which is called swarm, of particles. Each particle has
three features: position, velocity and fitness value. In
PSO, each particle can be represented as a candidate
solution (position) in the search space. The particles fly
through the search space by their own efforts and in
cooperation with other particles and they follow the best 
solutions they have achieved (local best solutions) as  well
as tracking the best solutions that they found (the best
global solution) (Cervantes et al., 2017; Lai et al., 2016;
Mirjalili and Lewis, 2013; Wen et al., 2011).

Mathematically,  the  search  space  is  assumed  to be
D-dimensional and there are m of particles in the swarm
where d = 1, 2…, D. During the movement, each particle
has a position vector xi = {xi1, xi2,…, xid} with a velocity
vector vi = {vi1, vi2,…, vid}. In the PSO algorithm, the best
position which gives the best fitness value for the particle
i is called best previous position denoted as Pbesti =
{Pbesti1, Pbesti2,…, Pbestid}. The best position found by
all particles is called the global best which is denoted as
Gbesti = {Gbesti1, Gbesti2,…, Gbestid}. In each iteration,
the PSO algorithm searches for the optimal solution by
updating the position and the velocity of the ith particle
according to the following two equations:

(7)   t 1 t t t t t
id id 1 1 id id 2 2 id idv z v c r Pbest x c r Gbest x          

where, t denotes the iteration in the algorithm, z is the
inertia weight which is used to balance between the global
search and the local search. In addition, c1 (the cognition
learning factor) and c2 (social learning factor) are the
acceleration coefficients. While r1 and r2 are random
values selected from a uniform distribution with (0,1).
The  pseudo  code  of  the  PSO  algorithm  is  displayed
in Fig. 1.

Proposed method: The efficiency of penalized support
vector machine with L1-norm penalty largely depends on
an appropriately choosing the tuning parameter, λ. In the
penalization, λ controls the tradeoff between classification
and the number of selected features. As a result, it is of
crucial importance selecting a suitable value of the λ. A
choice of λ that is small leads to overfitting the data
because a large number of variables will not be removed.
While when λ is large, a large number of variables will be
removed.
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Fig. 1: Pseudo code of the PSO algorithm

In literature, the most widely used method for
selecting  λ  is  the  Cross-Validation  (CV),  which  is  a
data-driven approach. However, it was pointed out that
CV usually identify too many irrelevant variables when
the number of variables is large (Broman et al., 2002;
Chen  et  al.,  2014)  and  can  be  very  time  consuming
(Park et al., 2014). Consequently, several modification of
the CV approach in estimating λ have been suggested by
researchers (Roberts and Nowak, 2014; Sabourin et al.,
2015; Jung and Hu, 2015; Meijer and Goeman, 2013;
Pang et al., 2016).

Due to drawbacks of CV approach, in this study, a
PSO algorithm is proposed to determine the tuning
parameter  in  PSVM  with  L1-norm  penalty.  The
proposed   method   will   efficiently   help   to   find   the
most significant variables in constructing quantitative
structure-activity   relationship   classification   model
with high classification performance. The parameter
configurations for our proposed method are presented as
follows.

The number of particles, m is set to 50 and the
number of iterations is tmax = 100. The acceleration
coefficients   c1   and   c2   are   set   within   the   range
(Khajeh et al., 2012; Liang et al., 2013). The c1 and c2 are
updating during the iteration according to the following
equations:

(9)1 1,min 1,max 1,min
max

t
c c (c c )

t
  

2 2,min 2,max 2,min
max

t
c c (c c )

t
  

Further, the minimum and the maximum values for
the inertial weight are: zmin = 0.2 and zmax = 0.9. The
inertial weight is updating according to the following
equation:

max max min
max

t
z z (z z )

t
  

The positions of each particle are randomly
determined. The position of a particle represents the
tuning parameter, λ. The initial positions of the particles
are generated from a uniform distribution within the range
(0-100). The initial velocities of each particle are
generated  from  a  uniform  distribution  within  the range
(0, 4). The fitness function is defined as:

d q
Fitness 0.8 CA 0.2

d

     
 
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Table 1: Characteristics of the four used datasets
Datasets Compounds No. (n) Descriptors No. (p) Class
Dataset 1 212 2571 Active = 108/inactive = 104
Dataset 2 75 3067 inhibitor = 108/non-inhibitor  = 104
Dataset 3 121 2559 31 active/90 inactive
Dataset 4 479 2322 213 active/266 weakly active

where, CA is the classification accuracy that obtained, d
represents the number of descriptors in the dataset, q
represents the number of the selected descriptors. The
fitness function are calculated for all particles and the
Pbest and Gbest vectors are determined.

The velocities and positions are updated using Eq. 7
and 8, respectively. Steps 4 and 5 are repeated until a
tmax is reached.

Evaluation criteria: The classification performance of
the used methods was measured by Classification
Accuracy (CA), Sensitivity (SE), Specificity (SP),
Mathew’s Correlation Coefficient (MCC) and Area under
the Curve (AUC). The used criteria are defined as:

(13)TP+TN
= 100%

TP+FP+FN+T
C

N
A (%) 

(14)TP
SE (%) = ×100%

TP+FN

(15)TN
SP (%) = ×100%

FP+TN

(16)
(TP+TN)-(FP+FN)

MCC =
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

where TP, TN, FP and FN be the numbers of true
positive, true negative, false positive and false negative of
the confusion matrix, respectively. The higher value of
the used evaluation criteria the power classification
performance is.

Datasets: Four collected datasets that are binary
classification problem and that have different numbers of
descriptors and compounds are collected. Dragon
Software (Version 6.0) was used to generate 4885
molecular descriptors including all 29 blocks based on the
optimized molecular structures. Preprocessing steps were
carried out to include consistent and useful descriptors.
The first step is to discard the descriptors that had zero
values. Then, remove the descriptors that had constant
value for all compounds. After that, the descriptors in
which 90% of their values were zeros were removed.
Finally, descriptors with a relative standard deviation of
<0.001 were deleted.

The four datasets are: diverse series of antimicrobial
agents  dataset  which  contains  212  different  agents

with 2571 descriptors. The corresponding antimicrobial
activities were measured as pMIC (the logarithm of
reciprocal of minimum inhibitory) concentration against
CA. The median (ME) of all 212 pMICs (ME = 1.3) as a
cutoff value to classify these antimicrobial agents into
active (>1.3, n=108) or inactive (<1.3, n = 104) is
considered   as   in   Daszykowski   et   al.   (2004)   and
Xing et al. (2014). This dataset consists of 75 compounds
with HDAC8 inhibitory activity and 3067 descriptors.
According to the IC50 (half maximal inhibitory
concentration) values, the compounds are divided into
two classes: An inhibitor class (0.008 μM <IC50<0.3 μM)
containing 38 compounds and a non-inhibitor class
(IC50>0.3 μM) containing 37 compounds (Cao et al.,
2015). A dataset of 121 molecules of thiourea derivatives
with anti-HCV activity and 2559 descriptors was used by
Algamal et al. (2017). According to their experimental
EC50 (the concentration of a drug that gives half-maximal
response), the molecules were divided into two categories
by the threshold value of 0.1 μM: actives (EC50<0.1 μM)
and inactives (EC50>0.1 μM). This dataset measures 2322
descriptors corresponding to 479 neuraminidase inhibitors
of in uenza a viruses (H1N1). The compounds were
separated into two groups according to their IC50: active
compounds with IC50<20 μM and those with IC50>20 μM
were considered as weakly active compounds (Algamal
and Lee, 2015; Li et al., 2016). The main characteristics
of four datasets are summarized in Table 1.

RESULTS AND DISCUSSION

With the aim of correctly assessing the performance
of  our  proposed  method,  PSVM-PSO,  comparative
experiments with the original CV of estimating the tuning
parameter (PSVM-CV) and the modified CV of Jung and
Hu (2015) (PSVM-MCV) were carried out.

In  these  experiments,  a  10-fold  is  set  and  the
range of the tuning parameters for the used methods is
fixed with 0 and 100. In addition, the linear kernel
function is employed. To obtain a reliable classification
performance, for each dataset, a 70% of samples is used
as a training dataset and remaining 20% of the samples is
used as a testing dataset. This partition repeated 20 times
and  the  averaged  evaluation  criteria  are  reported  in
Table 2.

As can be seen from Table 2, PSVM-PSO selected
less descriptors than the PSVM-MCV and PSVM-CV for
all the datasets. In dataset 4  (neuraminidase  inhibitors  of
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Table 2: Classification performance (on average) of the methods used over 20 partitions. The number in parentheses is the standard error
Training dataset Testing dataset

Datasets Methods Selected descriptors (No.) CA SE SP MCC CA
Dataset 1 PSVM-PSO 48 (0.087) 97.04 (0.038) 96.52 (0.032) 95.80 (0.035) 0.964 (0.037) 94.83 (0.041)

PSVM-MCV 57 (1.02) 92.22 (0.371) 90.92 (0.374) 91.31 (0.372) 0.915 (0.371) 89.07 (0.411)
PSVM-CV 73 (1.11) 90.35 (0.381) 90.51 (0.387) 90.31 (0.375) 0.901 (0.382) 87.57 (0.408)

Dataset 2 PSVM-PSO 31 (0.117) 96.22 (0.121) 94.74 (0.124) 93.68 (0.123) 0.958 (0.121) 93.21 (0.217)
PSVM-MCV 49 (0.741) 92.72 (0.214) 91.12 (0.236) 91.36 (0.242) 0.918 (0.252) 89.85 (0.266)
PSVM-CV 55 (1.113) 91.90 (0.355) 89.93 (0.372) 92.66 (0.441) 0.908 (0.361) 87.36 (0.402)

Dataset 3 PSVM-PSO 40 (0.002) 98.68 (0.005) 96.54 (0.006) 95.84 (0.006) 0.977 (0.003) 96.22 (0.008)
PSVM-MCV 51 (0.081) 92.24 (0.061) 91.87 (0.061) 92.32 (0.065) 0.911 (0.065) 88.34 (0.074)
PSVM-CV 59 (0.092) 90.74 (0.071) 90.11 (0.077) 90.34 (0.073) 0.898 (0.078) 87.11 (0.085)

Dataset 4 PSVM-PSO 59 (0.071) 98.82 (0.066) 97.24 (0.071) 97.32 (0.069) 0.979 (0.071) 95.81 (0.088)
PSVM-MCV 105 (0.255) 91.35 (0.236) 89.20 (0.238) 92.64 (0.243) 0.905 (0.244) 87.37 (0.274)
PSVM-CV 416 (1.013) 88.64 (0.516) 87.84 (0.538) 86.71 (0.537) 0.881 (0.522) 84.21 (0.614)

Table 3: Friedman and Bonferroni test results for the used methods over the four datasets
Methods Friedman average rank Friedman test results Bonferroni test results
PSVM-PSO 4.058 , p-value (0.05) = 0.0011 α0.05 = 6.185Friedman

2 16.036 
PSVM-MCV 8.186 α0.01 = 6.185
PSVM-CV 11.385 α0.10 = 6.185

in uenza a viruses (H1N1)), for instance, PSVM-PSO
selected 59 descriptors compared to 105 and 416
descriptors for PSVM-MCV and PSVM-CV, respectively.
Importantly,  PSVM-PSO  had  the  potential  to  select
less descriptors than the other two methods, indicating
that  most  of  these  additionally  selected  descriptors
were  probably  not  highly  irrelevant  to  classification
study.

In terms of classification accuracy, PSVM-PSO
achieved a maximum accuracy of 97.04, 96.22, 98.68 and
98.82% for dataset 1, 2, 3 and 4, respectively.
Furthermore, it is clear from the results that PSVM-PSO
outperformed the PSVM-CV in terms of classification
accuracy for all datasets. This improvement in
classification accuracy is mainly due to the PSVM-PSO
ability in selecting the tuning parameter. Moreover,
PSVM-MCV slightly improved  the  classification 
accuracy  compared  to PSVM-CV. The improvements
were 2.027, 0.887, 1.161 and 2.966% for the dataset 1, 2,
3 and 4, respectively.

It can easily observe from Table 2 that PSVM-PSO
has   the   best   results   in   terms   of   the   sensitivity
and  specificity.  The  PSVM-PSO  has  the  largest
sensitivity of 95.80, 93.68, 95.84 and 97.32% for the
dataset 1, 2, 3 and 4, respectively. This indicated that
PSVM-PSO significantly succeeded in identifying the
compounds that in fact are active (or inhibitor) with a
probability of 0.958, 0.936, 0.958 and 0.973, respectively.
On  the  other  hand,  the  results  for  the  specificity
represent the probability of a PSVM-PSO in identifying
the compounds that are inactive (or non-inhibitor). In
terms of the SP, PSVM-PSO significantly outperformed
the PSVM-MCV and PSVM-CV for all datasets. In the
dataset 4, for example, PSVM-PSO has the largest
probability of 0.973 in identifying the inactive compounds
compared to 0.926 and 0.867 for PSVM-MCV and
PSVM-CV, respectively.

Looking at the Mathew’s correlation coefficient, the
classification performance of the PSVM-PSO is
comparable with PSVM-MCV and PSVM-CV performing
best among them. In dataset 3, the MCC value was 0.977
of PSVM-PSO which is higher than that of PSVM-MCV
(MCC = 0.911) and PSVM-CV (MCC = 0.898). In
general, an algorithm with a higher Mathew’s correlation
coefficient value is considered to be a more predictive
classification algorithm.

Further, depending on the testing dataset, the PSVM-
PSO achieved the best classification results for the four
datasets. In the same line, the PSVM-MCV appears in the
second position. In contrast with the results, PSVM-CV
attains poor classification results. For instance, in dataset
2, the CA of the testing dataset is 93.21% by the PSVM-
PSO which is higher than 89.85 and 87.36% by PSVM-
MCV and PSVM-CV, respectively.

Depending on the AUC criteria, a non-parametric
Friedman test was employed to check whether  the
PSVM-PSO, PSVM-MCV and the PSVM-CV were
statistically significant. Then, the post hoc of Bonferroni
test was computed when the null hypothesis is rejected.
This test is computed under different critical values (0.01,
0.05 and 0.1). Table 3 summarized the statistical test
results. Based on the obtained results, the null hypothesis
is rejected at 0.05 significance level using Friedman test
statistic. As a result, the obtained results showed
statistically significant differences between the PSVM-
PSO and the other two used methods. In addition, the
PSVM-PSO has the lowest average rank with 4.058
comparing with PSVM-MCV and the PSVM-CV.
Depending  on  Bonferroni  test  results,  it  is  clearly
obvious that the average ranks of PSVM-MCV and
PSVM-CV are higher than α0.05, α0.01 and α0.10. These
results suggesting that both PSVM-MCV and PSVM-CV
are significantly worse than PSVM-PSO over the four
datasets.
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Fig. 2(a-d): Stability test results of the used methods for the four datasets

Further, a stability test which is an indicator of
descriptor  selection  consistency,  using  the  Jaccard
index is utilized to highlight the performance of the
PSVM-PSO.

Let,  D1  and  D2  be  subsets  of  the  selected
descriptors such that D1, D2fD, for a number of solutions
D = {D1,…, Dr}, the stability test is defined as:

(17)
r 1 r

i 1
J

j i 1
i jI (D ,D )

2
Stability test

r(r 1)



  


 

where, Ij(Di, Dj) is the Jaccard index which is defined as
the size of the intersection between any two groups
divided by the size of their union. Mathematically, it is
defined as:

1 2
J 1 2

1 2

D D
I (D ,D )

D D






The higher the stability test value is, the more stable
the  descriptor  selection  is.  Figure  2  shows  the
stability  test  values  on  the  four  datasets  for  the
PSVM-PSO,  PSVM-MCV  and  the  PSVM-CV.  As  can
be  seen  from  Fig.  2,  the  PSVM-PSO  displays  the
high rate of stability compared with PSVM-MCV and
PSVM-CV.

CONCLUSION

This study has proposed a PSO algorithm for
determining the tuning parameter of penalized support
vector  machine  with  L1-norm.  Results  obtained  from
t he PSVM-PSO  are  compared  with  PSVM-MCV  and
PSVM-CV. Experimental results with the four dataset
suggest that the PSVM-PSO choose the tuning parameter
consistently which reduces the dimensionality of the
datasets efficiently and improves the classification
performance.
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